
TRS-SO®
Model ID

Disk System Owners Manual

Mini-Disk Operation
TRSDOS™ Disk Operating System

Disk BASIC Programming Language

Cysr^M MANUFACTURED IN THE USA BY RADIO SHACKM A DIVISION OF TANDY CORPORATIO|f

$:

The FCC Wants You to Know . .

.

This equipment generates and uses radio frequency energy. If not installed and used prop-

erly, that is, in strict accordance with the manufacturer's instructions, it may cause interfer-

ence to radio and television reception.

It has been type tested and found to comply with the limits for a Class B computing

device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are

designed to provide reasonable protection against such interference in a residential instal-

lation. However, there is no guarantee that interference will not occur in a particular

installation.

If this equipment does cause interference to radio or television reception, which can be

determined by turning the equipment off and on, the user is encouraged to try to correct the

interference by one or more of the following measures:

• Reorient the receiving antenna

• Relocate the computer with respect to the receiver

• Move the computer away from the receiver

• Plug the computer into a different outlet so that computer and receiver are on different

branch circuits.

If necessary, you should consult the dealer or an experienced radio/television technician for

additional suggestions. You may find the following booklet prepared by the Federal Com-

munications Commission helpful: How to Identify and Resolve Radio-TV Interference

Problems.

This booklet is available from the US Government Printing Office, Washington, DC
20402, Stock No. 004-000-00345-4.

Warning
This equipment has been certified to comply with the limits for a Class B computing device,

pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer input/output

devices, terminals, printers, etc.) certified to comply with the Class B limits may be attached

to this computer. Operation with non-certified peripherals is likely to result in interference to

radio and TV reception.

Model III

Owner's
Manual

Radio /hack
9A DIVISION OF TANDY CORPORATION

FORT WORTH, TEXAS 76102

s~\

TRS-80 Model III Disk System Owner's Man-
ual: © 1980 Tandy Corporation, Fort Worth,
Texas 76102 U.S.A. AH Rights Reserved.

Reproduction or use, without express written per-

mission from Tandy Corporation or any portion of

this manual is prohibited. While reasonable

efforts have been taken in the preparation of this

manual to assure its accuracy, Tandy Corporation

assumes no liability resulting from any errors or

omissions in this manual or from the use of the

information obtained herein.

Model III TRSDOS® Operating System:

© 1980 Tandy Corporation, Fort Worth, Texas

76102 U.S.A. All Rights Reserved.

Model III BASIC Software: © 1980 Tandy Cor-

poration and Microsoft. All Rights Reserved.

The system software in the Model III microcom-

puter is retained in a read-only memory (ROM)
format. All portions of this system software,

whether in the ROM format or other source code

form format, and the ROM circuitry are copy-

righted and are the proprietary and trade secret

information of Tandy Corporation and Microsoft.

Use, reproductions, or publication of any portion

of this material without the prior written authori-

zation by Tandy Corporation is strictly prohibited.

10 987654321

OWNER'S MANUAL

To Our Customers
Congratulations on your purchase of the Model III Disk System. We think it's a

valuable tool which will save you work as well as give you hours of enjoyment

(or maybe both at once). You'll have all the power of the non-disk Model III,

plus the following features:

• Your Computer can now be controlled by trsdosCo]\ the powerful trs-80 Disk

Operating System, trsdos is included on a diskette with the Disk System.

• Using trsdos, you can run a wide variety of programs, such as the Disk basic

interpreter included on the trsdos diskette.

• Each "system" diskette has approximately 126,720 bytes of storage available

for your own programs and data; each "data" diskette has 178,944 bytes

available.

• You can load and save data at the approximate rate of 250,000 bits per second.

• Your system can continue to grow in power and convenience. When Radio

Shack issues improvements and enhancements to the system programs, you

can "install" them simply by obtaining a new release of the trsdos diskette.

Model III Manuals

Publications related to the use of the Model III Disk System;

1

.

Model 111 Disk System Owner s Manual (this manual). We 1

11 call it the "Disk

Manual" for short.

2. Model HI Disk System Quick Reference Card.

3. Model III Operation and basic Language Reference Manual, the "Model III

Manual" for short.

4. Model HI basic Quick Reference Card,

For Disk Operation;

This Disk Manual supplements the Model III Manual. Use the Disk Manual as

the primary source of information; we'll tell you when to refer to the non-disk

Model III Manual.

For Non-Disk Operation:

To use the Computer as a non-disk system, all you need is the Model III

Manual.

For Programming Information:

The Model III Manual contains most of the programming information, except

that which pertains to disk input/output. In this manual, we will assume that you

TRS-80 MODEL III DISK SYSTEM

are familiar with the basic programming definitions and details given in the

Model III Manual.

About This Manual
The Model III Disk System is intended for use by novices as well as

experienced computer operators and programmers. In designing and writing this

Disk Manual, we've tried to define and satisfy the needs of both groups:

Novices who might prefer a sequential presentation which emphasizes

procedures and explains the purpose of various features.

• Experienced users who might prefer a more analytical presentation which

makes it easy to find specific information.

In this manual, you'll find information that should satisfy your needs, whichever

group you might belong to.

The ''Sample Sessions" are especially geared for novices, while the Technical

Information chapters are for the more experienced users.

Keep in mind, however, that it isn't necessary to read the entire manual to

operate the Disk System. If you are only interested in Disk basic, for example,

read the Operation section of this book and then turn directly to the Disk basic

section. You can then go back to the trsdos section when you need to.

Special Terms

Even in the non-technical sections of this manual, we've had to use numerous

special terms. Rather than scattering and repeating definitions throughout the

book, we have used the following convention which we hope you'll find

helpful.

Special terms which are fully defined in another part of the manual are printed in

boldface. Look up the word or phrase in the Index; this will tell you where the

word is fully defined.

OWNER'S MANUAL

Contents

Operation

Installation : 1

Operation 4

Diskettes 5

Description Care

System Start-Up 6

Important Disk Operations 8

backup format Model 1/ III Conversion

Disk basic 11

Quick Instructions Start-Up Loading Baud Rate

TVoubleshooting and Maintenance 13

Notation and Abbreviations 14

Specifications 15

TRSDOS

Description of trsdos 17

Roles basic ram Use Memory Map

Using trsdos 20

Commands 20

Entering Syntax Forms

File Specification 22

File Name 23

Drive Specification 23

Password 24

A Few Important Definitions 24

Library Commands 26

Utility Commands 67

Technical Information 74

Disk Organization File Structure Systems Routines (I/O)

trsdos Error Codes/Messages .90

TRS-80 MODEL III DISK SYSTEM

Disk BASIC

Introduction 91

Enhancements to Model III Disk basic 93

Abbreviations Commands

Disk-Related Features , 116

Q File Manipulation Q File Access

Methods of File Access 145

Q Sequential Q Random

Disk basic Error Codes/Messages 155

Index 157

Customer Information 160

Warranty Back Cover

IV

OPERATION

Installation

First set up the Computer according to the instructions in the Model III Manual.

If you have a one- or two-drive system, installation is now complete. The built-

in drives should be ready for use.

If you have a three- or four-drive system, you need to connect the external

drives.

External Disk Drives

The two external drives are not interchangeable. They have different Radio

Shack Catalog Numbers and a few internal differences.

First External Drive Purchased

(Includes Cable)

Second External Drive Purchased

System

Name

"Drive 2/3'

"Drive 2"

Catalog

Number

26-1164

26-1161

The 26- 1 164 drive may be used as Drive 2 or 3, depending on the number of

drives in the system, In a three-drive system, it is always Drive 2 (the last

drive). In a four-drive system, it is always Drive 3 (again, the last drive).

The 26-1 161 drive may only be used in a four-drive system, in which it must be

Drive 2.

1

.

Locate the flat "ribbon" cable that was included with the 26-1 164 drive.

Notice that it has a single plug on one end, and two plugs clustered at the

other end. See Figure 1 for plug labels.

2. Connect the solitary "Computer" plug to the Disk Expansion Jack on the

bottom rear of the Computer. See Figure 2,

3. Now refer to Figure 3. Connect the external drive(s) to the other end of the

cable, as follows:

3-A. If you have one external drive (26-1 164);

Connect it to the "Drive 2" plug near the middle of the ribbon cable.

3-B. If you have two external drives (26-1 164 and 26-1 161):

Connect the 26-1 164 to the "Drive 3" plug on the end of the cable.

Connect the 26-1 161 to the "Drive 2" plug near the middle of the cable.

4. Plug the external drive(s) into an appropriate source of ac power. Power

requirements are specified on the unit and in the specifications given in this

manual.

You are now ready to start the Disk System.

TRS-80 MODEL III DISK SYSTEM

Computer Plug

Drive 3 Plug

Figure 1. External Disk Cable with Plugs Labeled.

Figure 2. Connection of the External Disk Cable to the Model III.

OPERATION

^ii^^mm^^

MINI-DISK (REAR VIEW)

Attach the plug so the cable exits

toward the rear of the Computer.

EDGE CARD PLUGS GUIDE PIN GUIDE SLOT

Figure 3. Connection of external disk drives.

TRS-80 MODEL III DISK SYSTEM

Operation

First, take a few minutes to become familiar with the various elements of your
Disk System. Refer to Figures 4 and 5, This is very important. If you try to use

the Computer without having a little background information, you could damage
a diskette.

Figure 4. The Model III Disk System with External Drives (optional/extra).

; Drive 0. The trsdos "system diskette" goes
in this drive.

: Drives 1, 2, and 3. These drives may
contain "data diskettes." Data diskettes are

described briefly in this chapter.

Drive Select led. When a drive is being

accessed, its led lights up.

) Drive Door. To insert or remove a diskette,

open this door. Never remove a diskette

while the led is lit, or while the diskette

contains open files.

CD Reset Button. When you press this button,

the Computer will attempt to load the

operating system software from Drive 0. The
trsdos diskette should be in Drive when
you press this button.

© Power Switch. All drives shouid be empty
when you turn the Computer on or off.

Otherwise, the information on the diskettes

could be destroyed.

Figure 5. A Diskette. (Catalog Number 26-305, 26-405, or 26-406)

© Storage Envelope. While a diskette is not in

use, keep it here.

© Write Protect Notch. When this is covered,

the disk-drives cannot write (change infor-

mation) on the diskette, Do not pinch the tab

into the notch when you apply it. If the tab

becomes indented, the disk drive may not

sense that the disk is write-protected. Leave

the notch uncovered if you want to save or

change information on the diskette.

<D Jacket. The diskette is permanently seated

inside this protective jacket. Do not attempt

to remove it.

© Read/Write Window. The disk drive

accesses the diskette surface through this

window. Don't touch the diskette surface.

CD Label. To write on this label, use only a felt-

tipped pen. Any other writing implement

might damage the diskette.

Diskettes

In general, handle diskettes carefully, using the same precautions you use with

tape cassettes and high-fidelity records. A small indentation, dust particle, or

scratch can render all or part of a diskette unreadable— permanently.

• Keep the diskette in its storage envelope whenever it is not in one of the

drives.

• Do not place a diskette in the drive while you are turning the system on or off.

• Keep diskettes away from magnetic fields (transformers, AC motors, magnets,

tvs, radios, etc.). Strong magnetic fields will erase data stored on a diskette.

TRS-80 MODEL III DISK SYSTEM

• Handle diskettes by the jacket only. Do not touch any of the exposed surfaces.

Don't try to wipe or clean the diskette surface; it scratches easily.

• Keep diskettes out of direct sunlight and away from heat.

• Avoid contamination of diskettes with cigarette ashes, dust or other particles.

• Do not write directly on the diskette jacket with a hard point device such as a

ball point pen or lead pencil; use a felt tip pen only.

• Store diskettes in a vertical file folder on a shelf where they are protected from

pressure to their sides (just as phono records are stored).

• In very dusty environments, you may need to provide filtered air to the

computer room.

Tips on Labeling Diskettes

Each diskette has a permanent label on its jacket. This label is for "vital

statistics" that will never change. For example, to help keep track of diskettes,

it's a good idea to assign a unique number to each diskette. Write such a number

on the permanent label. You might also put your name on the diskette, and

record the date when the diskette was first put into use. Remember, use only a

felt tip pen for marking.

This
fc

'permanent
1

' label is not a good place to record the contents of the diskette

since that will change, and you don't want to be erasing or scratching out

information from this label.

System Start-Up

1

.

Turn all peripherals on.

2. Turn the Computer on. Wait until all disk drive motors stop.

3. Locate the trsdos diskette that was supplied with the Disk System. Insert it

into Drive 0, with the label side facing up and the read/write window

pointing into the drive slot. See Figure 6.

4. When the diskette is fully inserted, close the drive door.

5. Press reset. The Computer should now load trsdos and begin the start-up

dialog described in the next section.

If nothing happens on the Display, or if the message: DISKETTE? or NOT A

SYSTEM DISK is displayed, check the following:

• Are you using a trsdos "system" diskette?

• Is the diskette properly inserted into Drive 0?

• If external drives are present, are they properly connected and turned on?

OPERATION

Figure 6. Inserting a Diskette.

If you can't find the problem, refer to the Troubleshooting and Maintenance

chapter for further suggestions.

TRSDOS Start-Up Dialog

Whenever you reset the Model III Disk System, it loads trsdos and begins the

start-up dialog.

1

.

The trsdos version number and date of creation will be displayed, followed

by the amount of ram (32K or 48K) and the number of drives in the system.

2. trsdos will prompt you to enter the date in the form mm/dd/yy. For example.

07/04/80 for July 4, 1980. Type in the correct date and press (ENTER) , trsdos

will not continue until you type in the date correctly.

3. trsdos will prompt you to enter the time in 24-hour form hh:MM:SS. For

example, 14:45:00 for 2:45 p.m. Type in the correct time and press [ENTER) . If

you don't wish to set the time, simply press CENTER) at the beginning of the

line, trsdos will set the time to 00:00:00.

4. trsdos will now display the message, TRSDOS READY

Whenever this is displayed, you are in the trsdos ready mode, and you may

type in a trsdos command.

TRS-80 MODEL III DISK SYSTEM

Important Disk Operations

In this section we will describe three very important operations:

1

.

Duplicating the trsdos diskette (backup)

2. Initializing a data diskette (format)

3. Converting files from Model I to Model III trsdos (convert).

All new customers should complete the trsdos backup procedure now; multi-

drive customers should also complete the format operation for a few diskettes.

Detailed information is provided later in this manual; here we will simply

outline the procedures.

Making a BACKUP (Duplicate) ofTRSDOS
Your first operation should be to duplicate the trsdos diskette you received

from Radio Shack. The trsdos diskette contains a utility program called

backup to accomplish this.

1

.

Locate the trsdos diskette and a new, blank diskette. The trsdos diskette

will be referred to as the "source," while the blank one will be called the

"destination," during backup.

2. Start trsdos as explained in the previous section. TRSDOS READY should be

displayed.

3. Type: BACKUP (ENTER)

4. trsdos will now load and start backup. It will ask you:

SOURCE DRIVE NUMBER?

Specify the drive which contains the original trsdos diskette by typing:

CENTER)

Next trsdos will ask: DESTINATION DRIVE NUMBER?

Now specify the drive which will be used for making the duplicate trsdos. If

you have two or more drives in your system, type: 1 CENTER)

trsdos will ask: SOURCE DISK MASTER PASSWORD?

Type: PASSWORD (ENTER)

(password is the password of the supplied diskette.)

Now'the duplication process will begin.

If the destination diskette is not formatted, backup will format it before

continuing. (Before any diskette can be used, it must be initialized or

"formatted"— the data regions defined and labeled, and a table of contents

or "directory'
1

created.)

OPERATION

If you are using a single-drive system, trsdos will prompt you to swap

source and destination diskettes several times during the formatting/backup

process.

After a single-drive backup, trsdos will display the message:

INSERT SYSTEM DISKETTE CENTER]

Be sure you have a trsdos diskette in Drive 0, then press [ENTER) .

The duplication process is now complete. We suggest you save the original

trsdos and use the duplicate as your working copy. If anything happens to the

working copy, you can make another one from the original.

Making a Data Diskette (FORMAT)
This section applies to multi-drive systems only.

Drive must always contain a trsdos diskette, so the Computer can have

access to the system programs stored there. Much of the storage capacity of this

diskette is taken up by the system programs.

However, the other drives in the system may contain
tl
data" diskettes which

have no system programs. All of the storage capacity of such diskettes is

available for your programs and data.

The format utility program takes a diskette and initializes or "formats" it.

If the diskette was previously formatted, all prior information can be lost.

The resultant diskette contains no system files and may only be used in

Drive 1, 2 or 3.

1

.

In the trsdos ready mode, type: FORMAT CENTER)

2. trsdos will start the formatter program and ask you a series of questions:

FORMAT WHICH DRIVE?

Insert a blank diskette into Drive 1 . Type: i (ENTER)

DISKETTE NAME?

This name will serve as an internal label for the diskette. Type in any

appropriate name of one to eight letters and numbers, starting with a letter.

Press CENTER) at the end of the name.

MASTER PASSWORD?

The password may be from one to eight letters and numbers, starting with a

letter. Press CENTER) at the end of the password.

Use of the password allows backup, prot, and purge access to all non-

system files. Unless special protection is needed, we suggest you use the

password password. Whatever password you select, don't forget it!

TRS-80 MODEL III DISK SYSTEM

If the diskette contains data, trsdos will warn you:

DISKETTE CONTAINS DATA » USE DISK OR NOT?

The warning is needed since format erases all previous information from the

diskette. Type N CENTER) to cancel format; type Y CENTER] or U CENTER] to

continue it.

3. trsdos will now format and verify the diskette. The data diskette will then

be ready for use in Drive 1 , 2, or 3.

Model I/III Conversion (CONVERT)
In general, Model I trsdos diskettes cannot be used in a Model III Disk

System. However, Model III trsdos includes a special program, convert, to

read a Model I trsdos diskette and copy its non-system files onto a Model III

trsdos diskette.

In two-drive systems, the files must be copied onto a Model III system diskette;

in three- or four-drive systems, the files may be copied onto a data diskette.

Here are abbreviated instructions for using this program. For further details, see

convert.

1

.

Using a Model I Disk System, remove all passwords from the diskette to be

converted. You can do this with the prot command, described in the Model I

TRSDOSlDisk basic Owner's Manual.

2. Start Model III trsdos.

3. Place the Model I diskette in Drive I, 2 or 3. (In two-drive systems, use

Drive 1; in three- or four-drive systems, Drive 2.)

4. In three- or four-drive systems, place a Model III data diskette in Drive 1

.

5. Type: CONCERT CENTER)

4. The conversion program will start by asking for the source drive number.

Type in the number of the drive containing the Model I diskette, then press

CENTER] .

5. Next, the conversion program will ask for the destination drive number. Type
in the number of the drive containing the Model III diskette, then press

(ENTER) . (In two-drive systems, use Drive 0; in three- or four-drive systems,

Drive 1 .)

6. Now all the non-system files will be converted and copied onto the

destination diskette. As each file is copied, its name will be displayed.

7. When the process is completed, you may remove the Model I diskette. It is

unchanged by the convert program. The destination diskette contains the

converted files.

8. To restore password protection to the converted files, you may use the prot

or attrib command.

10

OPERATION

Disk BASIC

Quick Instructions for Using Disk BASIC
In this section we'll "walk you" through the following procedures:

1. Starting Disk basic

2. Running a simple program

3. Saving a program in a disk file

4. Loading a program from a disk file

For programming information, see the Disk basic section of this manual.

Here we are showing procedures only.

Starting Disk BASIC
Under trsdos ready, type: BASIC (ENTER)

The Computer will load and start basic. First, it will ask two questions.

Press (ENTER) in response to each of them.

HOW MANY FILES? CENTER)

MEMORY SIZE? (ENTER)

A heading will be displayed, followed by:

READY

You may now begin using Disk basic.

Saving a Program

You should have a program in memory, and be in Basic's ready mode. Type:

SAVE "PROGRAM" (ENTER)

basic should now save the program in a disk file we arbitrarily named

"program." Any other suitable file name would do.

Loading a Program

For this sample session, we will load the program just saved.

First type: NEN (ENTER) to erase it from memory. (This is to prove that it can be

retrieved from the disk file.)

11

*K TRS-80 MODEL III DISK SYSTEM

Now type: LOAD " PROGRAM" (ENTER) and basic will load the specified

program.

You may now list it and run it.

For further information on using Disk basic, see Section 3 of this manual.

Setting the Cassette Baud Rate under Disk
BASIC
trsdos sets the cassette baud rate to High, If you would like to change this, use

the following trsdos command;

PATCH BASIC/CMD < ADD = 5202 ,FIND = 02) ,CHG=FF) CENTER)

Consequently, you will be prompted with: CASS? whenever you start Disk

BASIC.

You may then type either H (High) or L (Low) to choose the rate you need.

To change the system diskette back to its original state (i.e., no CASS?), simply

use the trsdos patch command again but reverse the find and chg values.

12

OPERATION

Troubleshooting and Maintenance

If you have problems operating your Model III Disk System, please check the

following symptoms and cures, and check the corresponding table in your

Model III Manual.

If you can't solve the problem, take the unit to your local Radio Shack. We'll

have it fixed and returned to you as soon as possible.

Symptom Cure

Disk drive motors run

continuously when the Computer

is turned on.

Check external drive connection sequence.

Drive 26-1 1 64 must always be the last

external drive.

Computer will not load trsdos. 1

.

Make sure you have inserted the

trsdos diskette properly in Drive 0.

2. Make sure ail peripherals are properly

connected.

Error Messages Look up the message in the trsdos or

basic Error Message Section. The "cure"

should be listed.

Frequent disk i/o errors 1

.

Diskette is partially erased. Backup the

diskette, then re-format it.

2. Diskette is worn out. Use backup copy, if

available, to make a new working copy.

3. Disk drives need cleaning or alignment

by Radio Shack service technicians.

Maintenance

For reliable operation, the disk drives must be kept clean and properly aligned.

These procedures should be done by Radio Shack service technicians, according

to the following schedule:

Degree of Use

Commercial data processing

environment

Occasional home use

Maintenance Interval

Every month for medium use.

Every 8-10 months; more often if

needed.

For further instructions, see the Troubleshooting and Maintenance section in

your Model III Manual.

13

TRS-80 MODEL III DISK SYSTEM

Notation and Abbreviations

For the sake of clarity and brevity, we've used some special notation and type

styles in this book,

capitals and punctuation

indicate material which must be entered exactly as it appears. (The only

punctuation symbols not entered are ellipses, explained below.) For example,

in the line:

DUMP LISTER (START = 70O0,END = 7100,TRA = 7004)

every letter and character should be typed as indicated.

lowercase italics

represent words, letters, characters or values you supply from a set of acceptable

values for a particular command. For example, the line:

LIST filename

indicates that you can supply any valid file specification after list.

Ellipsis indicates that the preceding items can be repeated. For example:

ATTRIB filename (option, . . .)

indicates that several options may be repeated inside the parentheses.

b

This special symbol is used occasionally to indicate a blank-space character

(ASCII code 32 decimal, 20 hexadecimal).

PRINT "BHbltt!"

X'nnnn

Indicates that nnnn is a hexadecimal number. All other numbers in the text

of this book are in decimal form, unless otherwise noted.

X'7000'

indicates the hexadecimal value 7000 (decimal 28672).

COMPUTER TYPE

Any words, letters, or numbers that are displayed on the screen will be in

computer type (dot-matrix). Uppercase letters are used; however, your screen at

times may display lowercase letters instead.

14

OPERATION

Specifications

Diskettes

Diskette Organization

(Formatted Diskette)

Operating Temperature

Power Requirements

(External Drives)

5 [A" mini-diskettes

Radio Shack Catalog

Number 26-305,

26-405 (package of three),

or 26-406 (package of 10)

Single-sided

Double-density

40 Tracks

18 Sectors/Track

256 Bytes/Sector

55 to 80 Degrees Fahrenheit

13 to 27 Degrees Celsius

120 VAC, 60 Hz, 28 VA (240 VAC, 50

Hz, Australian; 220 VAC, 50 Hz,

European)

15

Description ofTRSDOS

What Is TRSDOS?
trsdos (pronounced "triss-doss") stands for "trs-80 Disk Operating System."

It fulfills three roles:

1

.

Master Program

2. Command Interpreter

3. Program Manager

As the master program, trsdos enables the microprocessor and its various

components to interact efficiently. The components include:

• Random Access Memory (ram), trsdos reserves space for its own needs and

allocates space for user programs.

• Disk Drives, trsdos interfaces with the disk hardware and provides a file

system for storing system and user data on diskettes.

• Input/output devices. These include the keyboard, video display, printer, and

rs-232 c equipment.

trsdos is also a command interpreter. Whenever it displays TRSDOS READY,

you may enter commands that control how the system works. These are known

as
'

'library
1

' commands.

In its role as program manager, trsdos will load and run system or user

programs. During this time, the system or user program is in control of the

Computer.

Figure 7 illustrates the relationships between these three roles.

Where Does BASIC Fit In?

Referring to Figure 7, you'll see that Disk basic falls under the "language

package" category.

Disk basic consists of some general enhancements to Model III basic, plus the

disk input/output capability. It uses Model III basic (stored in rom) whenever

possible. For instance, the Model III basic rom includes all of the mathematical

functions.

If you're used to the non-disk system, there's one difference you should

understand from the beginning: In the non-disk system, basic is in control when

you start-up. In the disk system, however, trsdos is in control when you start-

up. You have to tell trsdos to load and run basic. Only then can you begin

running a program written in basic.

17

TRS-80 MODEL III DISK SYSTEM

How TRSDOS Uses RAM
trsdos is stored on the system diskette included with your Disk System Each
time the Computer is turned on or reset, the trsdos master program is loaded
into ram so it can take charge.

trsdos occupies approximately 40,000 bytes of space on the diskette; however
only a portion of that is in ram at once. This is possible because trsdos is

'

divided into several independent "modules."

The "resident" module is in memory at all times. It consists of input/output
drivers, tables, the command interpreter, and other essential routines.

Additional modules are loaded as needed, and replaced (or "overlaid") bv other
modules when they are no longer needed.

Note: After you enter a library or utility command, you will usually hear
trsdos accessing the system disk. It is loading an overlay module which
contains the code necessary to complete the command.

The Memory Map in Figure 8 illustrates how trsdos utilizes the available
memory space.

18

Master Program

Command
Interpreter

Program Manager

Figure 7. trsdos Roles.

BASIC,

OTHER
PROGRAMS

ROM

TRSDOS

DEBUG

w

"DO"

Figure 8. trsdos Memory Map

4000H

5200H

5500H

DOS OVERLAYS

7000H

FORMAT

8000H

END- 180H

TRSDOS

System Utility Language packages Z-80

Programs (FORMAT, (Disk BASIC, User
BACKUP, etc.) Editor/Assembler,

etc.)

Programs

V0S

(32K)
END (BFFFH)

(48K)
(FFFFH)

19

TRS-80 MODEL III DISK SYSTEM

Using TRSDOS

Entering a Command
Whenever the trsdos prompt,

TRSDOS READY

is displayed, you can type in a command, which can be no more than 63
characters in length. You must press CENTER) to end the line, trsdos will then
"accept'' the command.

For example, type: CLS (MM) trsdos will clear the Display and the trsdos
ready prompt will reappear.

In general, your commands will require more than one word. For example, to
kill (delete) a file named myname, you have to specify the command and the
filename.

KILL MYNAME CENTER]

tells trsdos to find the file named myname, eliminate it from the diskette, and
release the space previously occupied by that file.

Whenever you type in a line, trsdos follows this procedure:

1

.

First it checks to see if what you've typed is the name of a trsdos command.
If it is, trsdos executes it immediately.

2. If what you typed is not a trsdos command, then trsdos will check to see if

it's the name of a program file on one of the drives.

3. When searching for a file, trsdos looks first through Drive 0, then Drive 1

,

etc., unless you include an particular drive specification with the file name'— or specify the master command (see Library Commands).

If trsdos finds a specified user file, it will load and execute the file if it is a

program file. Otherwise, you'll get an error message.

Command Syntax

Command syntax is a command's general form (like the grammar or structure of
an English sentence). The syntax tells how to use keywords (such as dir, list,

create, etc.) together with the necessary parameters and punctuation.

If you need help remembering the syntax form of a specific command while
you're operating trsdos, type in:

HELP command CENTER]

-^,

20

TRSDOS

command should be the specific Library Command you're having trouble with.

trsdos will give you the syntax format as well as a brief definition of the

command.

Commands (Syntax Forms)

No-file commands

tviW'a^"iiiwiL|t' . ,.
' '[""..'' ''^'7"''"''""'\"""['"''::^^

wmimMUm^ purpose of the

inptit files (see build anil do).

One-file commands

21

TRS-80 MODEL III DISK SYSTEM

Two-file commands

command filename delimiter filename (options) comment

filename is a stpdard tbsdds file specification.

delimiter is a blank space

,

options— See definition above.

comment— See definition above.

File Specification

The only way to store information on a diskette is to put it in a disk file.

Afterwards, that information can be retrieved via the file name you gave the file

when you created or renamed it.

A file specification has the general form:

filen^me/extpB$sword:d

filename consists of a letter^

or numbers.

fextis an optional name-extensipn;
4

ext' is a sequence of up to three

letters or numbers, starting with a letter.

password^ an optional password; 'password' is a sequence of up to

eight letters or numbers, starting with a letter.

:d is an optional disk-drive specification;
4

d' is one of the digits

Note: There can be no blank spaces inside a file specification, trsdos
terminates the file specification at the first blank space.

For example: FILEA/TXT*MANAGER:3 references the file named filea/txt
with the password manager, on Drive 3.

22

TRSDOS

The name, extension, and drive-specification all contribute to the uniqueness of

a file specification. The password does not. It simply controls access to the file.

File Names
A file name consists of a name and an optional name extension. For the name,

you can choose any letter, followed by up to seven additional numbers or letters.

To use a name extension, start with a diagonal slash / and add no more than

three numbers or letters; however, the first character must be a letter.

For example:

MODEL3/TXT
NAMES/A 12

TEST

INVENTORY
AUGUST/A 15

TEST1

DATA11/BAS
WAREHOUS
TEST 1 /A

are all valid and distinct file names.

Although name extensions are optional, they are useful for identifying what type

of data is in the file. For example, you might want to use the following set of

extensions:

/BAS
/TXT
/CMD
/DAT

for basic program

for ascii text

for machine-language command file

for data

One advantage of using extensions is that you can tell by just looking at the

directory what kind of information a file contains.

Another advantage is that trsdos can recognize certain extensions. For

example, if a file has the extension /cmd, the trsdos will load and attempt to

execute that file when you type: filename (ENTER) omitting the extension /cmd.

Drive Specification

If you give trsdos a command such as: KILL TEST/A trsdos will search for

the file test/a first in Drive 0, then in Drive 1 , 2, and finally in Drive 3 until it

finds the file.

Anytime you omit a drive-specification, trsdos will follow this sequence,

unLess you use the master command.

It is possible to tell trsdos exactly which drive you want to use by specifying

the drive. A drive specification consists of a colon followed by one of the digits

0, 1 ,2, or 3, corresponding to one of the four drives you might be using.

For example: KILL TEST/A : 3 tells trsdos delete the file test/a on Drive 3

only.

23

TRS-80 MODEL III DISK SYSTEM

Anytime trsdos has to open a file (e.g., to list it for you), it will follow the

same sequence. When trsdos has to write a file, it will skip over any write-

protected diskettes.

Password

You can protect a file from unauthorized access and use by assigning passwords

to the file. That way, a person cannot gain access to a file without using the

appropriate password.

It's important to realize that every file has a password, even if you didn't specify

it when the file was created. In such instances, the password becomes eight

blank spaces. In this case, the file becomes unprotected— anyone can gain total

access simply by referring to the filename.

trsdos allows you to assign two passwords to a file:

• An "Update word," which grants total access to the information

• An "Access word," which grants limited access to the information (see

attrib)

When you create a file, the Update and Access words are both set equal to the

password you specify. You can change them later with the attrib command.

A password consists of a period followed by one to eight letters or numbers. If

you do not assign a password to a file, trsdos uses a default password of eight

blanks.

For example, suppose you have a file named secret/bas. and the file has

myname as an update and access word. Then the command: KILL SECRETS/

BAS will not cause the file to be killed. You must include the password myname
in the file specification.

Suppose a file is named domain/bas and has blanks for the password. Then the

command: KILL DOMAIN/BAS*GUESS will not be obeyed, since guess is not

the password.

A Few Important Definitions

System vs. Data Diskettes

A system diskette is one which contains the trsdos disk operating system

software. Subject to space limitations, it may also contain your own files. A
system diskette must always be in Drive while the Computer is in use.

A data diskette, on the other hand, does not contain the operating system

software, and therefore cannot be used in Drive 0. It may be used in Drive 1 , 2

or 3. Such a diskette has a maximum of space available for storing your own
programs and data.

24

TRSDOS

System, Program, and Data Files

System files include the trsdos operating system software, the basic language

interpreter, the format, backup and convert utilities, and other software

which is released by Radio Shack. These files appear in the Directory with an

"S" attribute. (See dir)

Program files are stored in a special format which allows them to be loaded and

executed directly from the trsdos ready level. For example, the basic

interpreter is a program file.

Data files include all files that are not in the correct format to allow loading and

executing from trsdos ready. For example, a program written in basic will be

stored as a data file. It can be loaded and executed from basic, but not from

TRSDOS READY.

Master Passwords

Each diskette is initially assigned a master password during format or backup.

(Your master password for trsdos is password.) The master password allows

you to use backup, purge, and prot on a diskette. Using a diskette's master

password, you may change it (see prot).

25

ITRS-80 MODEL III DISK SYSTEM

TRSDOS Library Commands

APPEND
Append files

append source-file destination-file

soume-ttle is the specification for the file which is to be

copied onto the end of the other file.

destination-fileis the specification for the file which is to

--wofw'4be^8iidagfr(8df|Won).

Note: Both source- and destination-files must be in ascii

format (date files or basic proflrams saved with the a

option).

append copies the contents of the source-file onto the end of the destination-file.

The source-file is unaffected, while the destination-file is extended to include the
source-file.

Note: The logical record lengths must match. See dir for more information on
logical record lengths.

Examples

APPEND WORDFILE/C WORDFILE/D

A copy of wordfile/c is appended to wordfile/d.

APPEND REGIONi/DAT TOTAL/DAT GUESS

A copy of regioni/dat is appended to total/dat, which is protected with the

password guess.

Sample Uses

Suppose you have two data files, payroll/a and payroll/b.

26

TRSDOS

PAYROLL/

A

PAYROLL/B

AtKinst W*R Lewis* G*E

BaKer t J.B Miller * L*Cu .
Chambers, C*P Peterson* B

Dodson* M,W Rodrisfuez* F* .
KicKawon * T Y

You can combine the two files with the command:

APPEND PAYROLL/B PAYROLL/A

payroll/a will now look like this:

PAYROLL/A

Atkins* W R

Baker* J+B*

Cham be rs * C P

Dodson* M W

Kick am on * T Y

Lewis* G E

Miller* L .
Peterson* B +
Rodriguez* F * ..
payroll/b will be unaffected. To see the APPENDed file, type LIST PAYROLL /A

(ASCII).

Note: Do not load a program under basic after an append.

ATTRIB
Change a File's Password

attrib file (visibility,^ = name,upo = na/ne,PR0T =

'"

r'

'";-

."'.''.S-;'.-^;

'

\':|^i^jg^k^itfji4ki]v.:'lf . "A
:

cfc--== , , -l» -'used , the acco»st^*irot^\;
:

i^:
:

»pftd^
:

.

:

:;-;;/;-'-
^:-

v";:a'.

"

:

:

;

upd = name tells trsdos the update word. If omitted, the update word

is unchanged. If upd= , Is used, the update word is Set to>

blanks.

27

TRS-80 MODEL III DISK SYSTEM

i^*U^M^^^-;t^'fmiimh level for access, tf omitted

Level Degree of access granted by access word

FULL

KILL

NAME

WRITE

READ

EXEC

Full access, no protection.

Kill, rename, read, execute, and write (gives
total access, i.e., the least-protected).

Rename, read, execute, and write.

Read, execute, and write.

Read and execute.

Execute only.

Note: Each level allows access to itself plus all lower levels.

attrib lets you change the passwords to an existing file or makes the file
invisible or non-invisible. Passwords are initially assigned when the file is
created. At that time, the update and access words are set to the same value
(either the password you specified or a blank password).

Examples

ATTRIB DATAFILE (I ,ACO JULY14 »UPD = M0USE , PR0T = READ

)

Makes the file invisible, sets the access password to julyh and the update
password to mouse. Use of the access word will allow only reading and
executing the file.

ATTRIB PAYROLL/BAS, SECRET (N»ACC=»)

Sets the access word to blanks. The file is made non-invisible and the protection
level assigned to the update word is left unchanged.

ATTRIB OLD/DAT. APPLES <UPD=»)

Sets the update word to blanks.

ATTRIB PAYROLL/BAS, PW (PR0T=EXEC)

Leaves the access and update words unchanged, but changes the level of access.

Sample Uses

Suppose you have a data file, payroll, and you want an employee to use the
hie in preparing paychecks. You want the employee to be able to read the file
but not to change it. Then use a command like:

28

TRSDOSL^d

ATTRIB PAYROLL (I *ACC = PAYDAY t(JPD = AV0CAD0 tPROT = READ)

Now tell the clerk to use the password payday (which allows read only); while

only you know the password, avocado, which grants total access to the file.

Protecting BASIC Programs

You may give a basic program execute-only protection using the attrib

command. For example, suppose the program is named test (no password).

Under trsdos ready, execute this command;

ATTRIB TEST < ACC= »UPD = VALLEY ,PR0T = EXEC

)

Now test has a blank access password, an update password of valley, and an

access level of execute only. Without using the update password, there is now

only one way to execute the program:

1. Start basic.

2. Type: RUN "TEST"

(This is the only way to access the program. If the operator attempts to load

it instead, basic will erase the program from memory before returning with

ready.)

After the run "test" command, basic will load and execute the program. If

the operator presses (BREAK) or if the program ends normally, basic will erase the

program before returning with the ready message. This makes it impossible to

obtain a listing of the program— unless the update password is used.

Of course, if you use the update password, you may gain full access to the

program.

AUTO
Automatic Command after System Start-up

command-line gives trsdos a command 01 name of an executable

program file created by build.

\icommand-line \$ given, the command will be executed on reset/

power-up.

if mmmand-lme is omitted, the previous auto command is erased

from the diskette.

29

TRS-80 MODEL HI DISK SYSTEM

This command lets you provide a command to be executed whenever trsdos is
started (power-up or reset). You can use it to get a desired program running
without any operator action required, except for typing in the date and time.

When you enter an auto command, trsdos writes command-line into its start-
up procedure, trsdos does not check for valid commands; if the command line
contains an error, it will be detected the next time the System is started up.

Examples

AUTO DIR (SYS)

Tells trsdos to execute the command dir (sys) after the start-up procedure.
Each time the System is reset or powered up, it will automatically execute that
command after you enter the date and time.

AUTO BASIC

Tells trsdos to load and execute basic each time the System is started up.

AUTO FORMS (WIDTH=S0)

Tells trsdos to reset the printer width parameter each time the System is started
up.

AUTO PAYROLL/CMD

Tells trsdos to load and execute payroll/cmd (must be a machine-language
program) after each System start-up.

AUTO DO STARTER

Tells trsdos to take automatic key-ins from the file named starter after each
System start-up. See build and do.

To Erase an AUTO Command
Type: AUTO [ENTER]

This tells trsdos to erase any automatic command. The command will be
deleted the next time you power-up or reset the System.

The acknowledgement: AUTO = "" is displayed after an erasure.

To Override an AUTO Command
You can bypass any automatic command by holding down (ENTER] while pressing
reset. You must continue holding down CENTER) until you are prompted for the
date during the initialization process.

30

BUILD
Create an Automatic Command Input File

file is a file specification which cannot include an extension,

This command lets you create an automatic command input file which can be

executed via the do command. The file must contain data that would normally

be typed in from the keyboard to the trsdos ready mode.

build files are intended for passing command lines to trsdos just as if they'd

been typed in at the trsdos ready level. Note: clear cannot be used in a do

file.

When you enter the build command, build creates the file and immediately

prompts you to begin inserting lines. Each time you complete a line, press

(ENTER) . (While typing in a line, you can use the usual cursor control keys for

erasures and corrections.)

To end the build file, simply press (BREAK) at the beginning of a line.

First type: BUILD filename

You will then be prompted to type in the command text. You then type in up to

63 characters, then press (ENTER) . You may enter as many lines as necessary.

Press (BREAK) to quit and return to trsdos ready.

A Sample BUILD-File

Here's a hypothetical BUiLD-file that initializes the serial interface and the printer

driver:

SETCOM <BAUD=12(Z}0,WAIT)

FORMS <WIDTH=80)

PAUSE SERIAL INTERFACE & PRINTER INITIALIZED

31

TRS-80 MODEL Hi DISK SYSTEM

CLEAR
Clear User Memory

\^i^fMmim^^^M^ start clearing user memory, aaaa
is a fdur-drgit hexadecimal number from 6000 to the end of user
memory. If this option Is omitted, eooo is used. If this option Is

used, end == bbbb must also he used.

end = bbbb tells trsdos to clear user memory to a specified end. bbbb
*s a feuMigif hexadecimal number no less than the start
number ano' no gfeater than the top of memory. If this option is

used, start= aaaa must also be used.

mem = ccce sets the memory protect address, cccc is a four-digit

hexadecimal number from 0000 to ffff. If this option is omitted,
the memory protect address is reset to end of user ram.

If all options are omitted, all available ram is cleared, memory-
protect is reset to end of memory, the Display is cleared, all 1/0

drivers are reset (see Memory Requirements of trsdos).

This command gets you off to a fresh start.

Depending on the options you select, this command will:

• Zero user memory (load binary zero into each memory address above 6000)
• Clear the Display

• Un-protect all memory

See Memory Requirements of trsdos for more information on the memory-
protect address. Note: clear cannot be used in a do file.

Example

CLEAR (START=9000,END=0A000)

Note: Hexadecimal numbers which begin with a letter must be prefaced by zero
(see above example).

CLEAR (MEM=7000)

32

TRSDOS

CLOCK
Turn On Clock Display

This command controls the real-time clock display in the upper right corner of

the Video Display. When it is on, the 24-hour time will be displayed and

updated once each second, regardless of what program is executing.

Clock display is off at trsdos start-up.

Note: Except during cassette and disk i/o, the real-time clock is always running,

regardless of whether the clock display is on.

Examples

CLOCK

Turns on the clock display.

CLOCK (OFF)

Turns the clock display off.

See time and date.

CLS
Clear the Screen

This command clears the Display and puts it in the 64 character/line mode.

Example

CLS

33

TRS-80 MODEL III DISK SYSTEM

COPY
Copy a File or Files

source-file is a file specification for the file to be copied.

destination-file is a file specification for the name and drive of the

ittletis Trsdos to copy the file onto drive d, using the same file name,

/exits a "wiWicard" file specification in which the file name is

omitted and the extension is given, trsdos will copy all files

which have a matching extension, regardless of the file name.

:tf is defined above.

This command copies source-file into the new file defined by destination-file.
This allows you to copy a file from one disk to another, using a single drive if

necessary. (In the latter case, you must include drive specifications in both file

specifications.) For single-drive systems (Drive 0), both diskettes must contain
trsdos. (i.e., Data diskettes aren't allowed in Drive 0.)

Examples

COPY OLDFILE/BAS NEWFILE/BAS

Copies oldfile/bas into a new file named newfile/bas. trsdos will search
through all drives for oldfile/bas, and will copy it onto the first disk which is

not write-protected.

COPY NAMEFILE/TXT :1

This command specifies a file named namefile/txt to another disk.

COPY FILE/EXT:0 :i

This command copies file/ext from Drive to Drive 1

.

34

TRSDOS J

COPY /BASsO 5i

tells trsdos to copy all Drive files which have the extension /bas. The files

will be copied onto Drive 1 , using their present file names and extensions.

Sample Use

Whenever a file is updated, use copy to make a backup file on another disk. You

can also use copy to restructure a file for faster access. Be sure the destination

disk is already less segmented than the source disk; otherwise the new file could

be more segmented than the old one. (See free for information on file

segmentation.)

To rename a file on the same disk, use rename, not copy.

CREATE
Create a Pre-allocated File

te^ If omitted, tm is as^iini#. f ;

refc&rdstlosired; it omitted, no records are al|o0pC :

This command lets you create a file and pre-allocate (set aside) space for its

future contents. This is different from the default (normal) trsdos procedure in

which space is allocated to a file dynamically, i.e., as necessary when data is

written into the file.

If you open the file for sequential writes, trsdos will de-allocate (recover) any

unused granules when the file is closed. If you open the file for random access,

trsdos will not de-allocate space when the file is closed.

35

You may want to use create to prepare a file which will contain a known
amount of data. This will usually speed up file write operations. File reading
will also be faster, since pre-allocated files are less segmented or dispersed on
the disk— requiring less motion of the read/write mechanism to locate the
records.

Examples

CREATE DATAFILE/BAS <REC=300, LRL=0)

Creates a file named datafile/bas, and allocates space for 300 256-byte
records.

CREATE NAMES/TXT. IRIS (LRL=64 iREC = 50

)

Creates a file named names/txt protected by the password iris. The file will be
large enough to contain 50 records, each -64 bytes long,

CREATE PAYROLL/BAG

Creates a file named payroll/bas but allocates no space to it.

Sample Use

Suppose you are going to store personnel information on no more than 250
employees, and each data record will look like this:

Name (Up to 25 letters)

Social Security Number (11 characters)

Job Description (Up to 92 characters)

Then your records would need to be 25 + 1 1 + 92 - 128 bytes long.

You could create an appropriate file with this command:

CREATE PERSONNL/TXT (REC = 250 ,LRL= 128

)

Once created, this pre-allocated file would allow faster writing than would a
dynamically allocated file, since trsdos would not have to stop writing
periodically to allocate more space (unless you exceed the pre-allocated
amount).

DATE
Reset or Get Today's Date

mm/dd/yyi$ the specification for the month (mm), day (*M) and

36

Easts must be a two-digit decimal number between the following

ranges:

mm 01-12

dd 00-31

W 00-99

The specifleations are an option; however, if one specification is

used, they all must be used.

ftmm/dd/yym omitted, trsdos displays the current date.

If mm/dd/yy Is given, trsdos resets the date.

This command lets you reset the date or display the date.

You initially set the date when trsdos is started up. After that, trsdos updates

the date automatically, using its built-in calendar. You can enter any two-digit

year after 1900.

When you request the date, trsdos displays it in the format: (37/25/80 for July

25, 1980.

Examples

DATE

Displays the current date.

DATE 07/18/80

Resets the date to July 18, 1980.

DEBUG
Start Debug Monitor

DEBUG

This command starts the debug monitor, which allows you to enter, test, and

debug machine-language programs.

37

TRS-8Q MODEL III DISK SYSTEM

Its features include:

• Full- or half-screen displays of memory contents

• Commands for modifications to ram and register contents

• Single-step execution of programs

• Breakpoint interruption of program execution

• Transfer of control (Jump)

• "Editing" of disk-files

debug uses the memory area from xmeoo' to x*54FF (see trsdos Memory
Map), debug can only be used on programs in the user area x^w to top.

Examples

DEBUG

Turns debug on. Press ® to quit debugging and return to trsdos.

Turns debug off.

Command Description

Debug commands are usually entered by pressing a single key. In most cases,
you do not have to press (INTER) after the command has been typed in. Either'
a prompt will immediately be displayed or debug will execute the operation
without further instruction.

In some cases, you will have to enter a specific hexadecimal value or address
(see r and j commands, for instance). Instead of pressing (ENTER) after the
address is typed in, you will have to press (SPACEBAR) .

Once you have entered the debug program, you may use any of the following
special commands:

D (Display Memory Contents)

Press ® to display the contents of memory, trsdos will respond with the
prompt: D ADDRESS - You should type in the hexadecimal address of the
memory location you wish to see.

The display will be either half- or full-screen, depending on the format you are
currently using (see below).

38

TRSDOS

X (Half-Screen Display)

Press ® to put the Display in the half-screen format. A 128-byte block of

memory will be displayed starting with the next lowest address which is a factor

of 16.

Figure 9 shows a typical half-screen format.

S (Full-Screen Display)

Press ® to display the contents of a 256-byte block of memory starting with the

next lowest address which is a factor of 256.

Note: The last 16 bytes on the Display will be overlaid by any command line

typed in after the full-screen display is updated.

M (Modify RAM)
Press ffi) to change to the disk utility display format (see the f command).

trsdos will respond with the prompt: M ADDRESS - You should type in the

four-digit hexadecimal address of the memory location you wish to modify,

followed by a blank space (anything other than a space will abort the

command).

The display will change to the memory edit format. The cursor will appear as a

blinking character at the specified location.

To exit the modify mode, press CENTER) to keep all changes made.

R (Change Register Contents)

Type:

feadfticj zeros are assumed.

I (Instruction Single-Step)

Pressing CD will allow the Computer to execute a single z 80 instruction. The

display will then be updated.

39

TRS-80 MODEL III DISK SYSTEM

Start address
of one 16-byte
"row" of RAM

RAM display—
A
hex contents
of each byte

2-80 register contents

'

Op-code Instructions at the "PC" address

Figure 9. Half-Screen Format.

The instruction in the memory contents referenced by the program counter is

executed. The program counter is increased by the appropriate value, and the
control is returned to debug.

debug will not, however, step through a call or jump into a rom address.

C (Call Single-Step)

If you wish to complete an entire call/return sequence, press ©. The call is

then executed and control is returned to debug when the subroutine returns.
Otherwise, this instruction acts just like the I command.

You will not be able to step through a call or jump into a rom address.

ASCII display
(• indicates a

nondisplayable
character)

U (Update)

Pressing © causes the Display to be updated repeatedly. Press any key to
from this mode.

exit

40

TRSDOS

; (Increment Display Address)

If the Display is half-screen, the first location shown is incremented by 16 when
you press CD- If the full-screen format is displayed, the starting address will be

incremented by 256.

— (Decrement Display Address)

If the Display is half-screen, the first location is decremented by 16 when you

press Q- If the full-screen format is displayed, the starting address will be

decremented by 256.

J (Jump)

Press GD to transfer control to a machine-language program, setting optional

breakpoints.

Debug will respond with the prompt: J ADDRESS? =

You may type in a jump address and a breakpoint address. The command is

terminated when you press (ENTER] . Type in the addresses in one of three

formats:

i«8BE$s? as aaaa.bbbb (1HTER)

ial address specifying the jump

destination. If omitted, the address in the pc register is used.

mal address specifying a breakpoint.

Before the Computer executes an instruction at this address, it

will return control to debug, if this address is omitted, control

will not return to debug.

Notes: Breakpoints must be set at the beginning of z-80 instructions. You may
not set breakpoints in rom addresses. The breakpointed address will contain an

x*F7' until the breakpoint is encountered. Then the original contents will be

restored and debug will take control again.

Q (Quit)

Pressing (J£) turns off debug and returns control to trsdos.

41

mjTRS-80 MODEL III DISK SYSTEM

F (File Patch Utility)

This command lets you load and modify the contents of a diskette file.

When you press ©, debug will respond with the prompt: FILES PEC?. Enter the

name of the file to be patched.

debug will set up a full-screen display showing the first 256 bytes in the file.

You can "page" through the file using the CD andQ keys.

Figure 10 gives a typical display.

In this file-display mode, both hexadecimal and ascii are given for each byte. If

a code has no displayable character, a period is shown in the ascii area.

The display control commands are like those for the normal file-display mode:

CD Next page

O Previous page

To change the file contents, press ®. This puts you in a modify-memory mode
like the one previously described. Use the arrow keys to position the cursor (a

blinking character), then type in the correct contents as a hexadecimal value.

When you are through changing a page on the display, press (ENTER) . The
diskette file will be updated and you will be returned to the file-display mode.

To cancel changes made, do not press (ENTER) , press (BREAK) . This will put you
back in the file-display mode without updating the diskette file. You may press

CD thenQ to restore the page display to its actual contents.

To quit patching a file, press (BREAK) while in the file display mode, debug will

prompt you for a new file specification. Press (BREAK) again and you will be
returned to trsdos ready.

42

Figure 10. Full-Screen Format

43

TRS-80 MODEL III DISK SYSTEM

DIR
List the Diskette Directory

Dia;rffffiIV,SYS,PRT)

:itk the desired drive directory, if omitted, Drive is assumed.

m lists the invisible user files, if omitted, non-invisible user flies are
listed.

sys lists system and user files. If omitted, only non-invisible user files are
listed.

put lists the directory to the Printer. If omitted, the directory will be listed
on the Video Display only.

If no option is given, tbsdos lists non-invisible user files in Drive 0.

This command gives you information about a disk and the files it contains.

To pause the listing, press CD. To continue, press CENTER) . To terminate the
listing, press (BREAK) .

Examples

DIR

Displays the directory of non-invisible user files in Drive 0.

DIR :l (PRT)

Lists the directory of the user files in Drive 1 to the Printer.

Sample Directory Listing

(See Figure 11.)

Definition of column headings

© File Name— The name and extension assigned to a file when it was created
The password (if any) is not shown.

@ Attributes— A four-character field.

The first character is either i (Invisible) or n (Non-invisible).

The second character is s (System) or * (User) file.

The third character gives the password protection status:

44

TRSDOS

Figure 11. Directory Listing.

x The file is unprotected (no password).

a The file has an access word but no update word,

u The file has an update word but no access word.

b The file has both update and access words.

The fourth character specifies the level of access assigned to the access word:

Total access

1 Kill file and everything listed below.

2 Rename file and everything listed below.

3 This designation is not used.

4 Write and everything listed below.

5 Read and everything listed below.

6 Execute only.

7 No access.

® Number of Free Granules— How many free granules remain on the diskette.

® Logical Record Length— Assigned when the file was created.

© Number of Records— How many logical records have been written.

© Number of Granules— How many granules have been used in that

particular file.

45

TRS-80 MODEL III DISK SYSTEM

® Number of Extents— How many segments (contiguous blocks of up to 32
granules) of disk space are allocated to the file.

© End of File (eof)— Shows the last byte number of the file.

© Creation Date— When the file was created.

DO
Begin Auto Command Input from a BUILD-File

do command-line

command-line is the name of file created with build. No extension should
be specified. The file will automatically be given the extension /bld.

This command reads and executes the lines stored in a special-format file

created with the build command. The System executes the commands just as if
they had been typed in from the Keyboard.

Command lines in a build file may include library commands or file

specifications for user programs.

When do reaches the end of the automatic command input file, it returns control
tO TRSDOS.

The debug and clear command cannot be included in a build file.

In addition to executing trsdos library commands, you can load and execute
user programs from a Do-file. You will probably want to make your program
name be the last line in the Do-file.

Examples

DO STARTER

trsdos will begin automatic command input from starter, after the operator
answers the Date and Time prompts.

AUTO DO STARTER

Whenever you start trsdos, it will begin automatic command input
from starter.

46

Sample Uses

Suppose you want to set up the following trsdos functions automatically

on start-up:

FORMS (WIDTH=80)

CLOCK (ON)

Then use build to create such a file. If you called it begin, then use the

command; AUTO DO BEGIN to perform the commands each time trsdos

starts up.

DUAL
Duplicate Output to Video and Printer

TRSDOS

dual (switch)

'm^'h9MM^0^mf on or off. If omitted, trsdos uses on.

This command duplicates all video output to the Printer, and vice versa. It takes

effect immediately.

Notes:

1

.

Video and printer output may be different because of intrinsic differences

between output devices and output software.

2. Using the dual command will slow down the video output process.

3. The dual command cannot be used during route and vice versa.

4. The printer should be ready when you execute the command.

Sample Use

For a printed copy of all system/operator dialog, type: DUAL (ENTER)

To turn off the dual process, type: DUAL (OFF) (ENTER)

47

TRS-80 MODEL III DISK SYSTEM

DUMP
Store a Program Into a Disk File

wm file (start = aaaa, end = bbbb, tra = cccc, relo = dddd)

file is the file specification

start = aaaa is the start address of memory block, aaaamm be a four-

digit hexadecimal number greater than or equal to rvm:

end = bbbb is the end address of the memory block, bbbb must be a four-

digit hexadecimal number.

tra^ eczcls the transfer address where execution starts wheh the program
is loaded, ccce must be a four-digit hexadecimal number. If this

option is omitted, the command will default to trsdos re-entry.

reio - dd0 is the start address for relocating or loading the program back
into memory, dddd must be a four-digit hexadecimal number. If this

option is omitted, no relocation will take place.

Note: Addresses must be hexadecimal form, without the x notation.

You must add the prefix "0" to any hex number which begins with a
letter,

This command copies a machine-language program from memory into a
program file. You can then load and execute the program at any time by entering
the file name in the trsdos ready mode.

Examples

DUMP LISTER < START = 7000 ,END = 7100 ,TRA = 7004)

Creates a program file named lister/cmd containing the program in memory
locations x'70ocr to x'7ioo\ When loaded, lister/cmd will occupy the same
addresses, and trsdos will protect memory beginning at x'70oo\ The program is

executable for the trsdos ready mode.

DUMP PR0G2 <START=7000,END=7F00»TRA=8010,RELO=8000)

Creates a program file named proc,2/cmd containing the program in addresses
x-7000' to x'7F00\ When loaded, prog2/cmd will reside from x'sooo' to X'hfoo\
Execution will start at x'soirr.

48

TRSDOS

ERROR
Display Error Message

mnm number

number is a decimal number for a trsdos error cade;

This command displays a descriptive error message. For example, after

receiving the message, * * ERROR 47 * * you may respond with the

command: ERROR 47 [ENTER) and trsdos will display the full error message.

For a complete list of error codes and messages, see the Technical Information

section of this manual.

FORMS
Set Printer Parameters

FORMS (WIDTH= W, HUES = /)

width = wis the maximum number of characters per output line. If a line

reaches this length, trsdos will insert a cartage Tetwrn to imm a new

line. If this option is omitted, the current maximum width will be

used. To disable the maximum line width feature, use width = 255.

trsdos will not force new lines.

tiNis = lis ths number of lines per page, trsdos does not use this value.

However, basic will use it in computing the necessary page

displacement for execution or if lprint chr$(12) is executed. If lines = /

is omitted, the current value is used.

This command lets you modify the printer forms control features of trsdos.

The default values are:

Maximum line width: 132

Lines/page: 60

forms also sets the line count to 0.

49

Examples

If you are using 8'/2"-wide forms, you will probably want to set width = 80-
FORMS <WIDTH=80)

If you are using 14"-long forms, you may want to set lines -78.

FORMS (LINES=78)

This change will allow the basic statement, lprintchr$(12), to advance a naze
by the correct number of lines.

Notes:

1. The width you specify is stored in ram location 16427. The lines you
specify is stored in ram location 16424.

2. The Printer must be ready when you execute this command.

FREE
Display Disk Allocation Map

(iwi tells trsdos to send the map to the Printer.

It omitted; trsdos sends the map to the Video Display only.

This command gives you a map of granule allocation on a diskette. (A granule,
1280 bytes, is the unit of space allocation.) It also shows the location of the
directory and any flawed sectors.

When a diskette has been used extensively (file updates, files killed, extended,
etc.), files often become segmented (dispersed or fragmented). This slows the'
access time, since the disk read/write mechanism must move back and forth
across the diskette to read and write to a file.

free helps you determine just how segmented your disk files are. If you decide
you'd like to re-organize a particular file to allow faster access, you can then
copy it onto a relatively "clean" diskette.

50

TRSD

Examples

FREE

Displays a free space map of the diskette in Drive 0.

FREE (PRT)

Lists the free space for Drive to the Printer.

FREE :I (PRT)

Lists the Drive 1 map to the Printer.

A lypical FREE Display

Four special symbols are used in the free map.

• Unused Granule

Direct Directory Information

X Allocated Granule

Flawed Granule Contains a Flawed Sector (Unusable)

A typical free map display is shown in Figure 12.

Disk Name All six granules in

track 2 are allocated

Figure 12. Free Map
The directory is located
on track 17.

HELP
Explanation of TRSDOS Command

help command

wmmandls the specific trsdqs command or subject on which you need

help. If omitted or if an invalid subject is given, trsdos will list all

available subjects.

51

TRS-80 MODEL III DISK SYSTEM

Example

If you type in the following: HELP BACKUP (INTER] trsdos will respond with
the syntax format, a definition of the command, and an explanation of
the abbreviation.

HELP SYNTAX tells trsdos to explain the hitp descriptions.

KILL
Delete a File or Group of Files

Two syntaxes:

A) kill file

file is a file specification

B) miL/extd

lextis a file extension that must contain three characters.

:d is a drive specification. It must be provided.

This command deletes one file or a group of files, depending on which form is

used. Form A deletes the specified file. If no drive specification is given,
trsdos deletes the file from the first diskette that contains it.

Form B deletes all files with a specified extension, regardless of the file name of
each file. If no drive specification is given, the files will be deleted from the first

drive that contains a matching file specification.

Examples

KILL TESTPROG/BAS

Deletes the named file from the first drive that contains it.

KILL JOBF I LE/ I DY, PASSWORD: 1

Deletes the named file from Drive I . The file has a password of password.

KILL /BAS:(3

Deletes from Drive all files having the extension bas.

52

TRSDOS

LIB
Display Library Commands

LIB

This command lists to the Display all the library commands. For help with a

command, use help.

Example

LIB

LIST
List Contents of a File

im file (mT,$im,asch)

file is the file specification.

?m tells TRSDOS to list to the Printer. If omitted, only the Video Display is

used.

sum tells irtsftos to pause briefly after each record. If omitted, the listing is

continuous.

AiHitelteRSDOs to list the file in asch format. If omitted, hexadecimal

format is used.

This routine lists the contents of a file. The listing shows both the hexadecimal

contents and the asch characters corresponding to each value. For values

outside the range (X'20\ x^f 1

), a period is displayed.

Use the asch option for text files and basic programs saved with the a option.

Note: Only ascii codes xw-x^F' are sent to the Printer. Bit 7 is always

set to 0.

During the listing, press (@) to pause, CENTER) to continue, or (BREAK) to exit.

53

TRS-80 MODEL III DISK SYSTEM

Examples

LIST DATA/TXT (ASCII)

Lists the contents of data/txt in ascii format.

LIST FILE/A (SLON)

Lists the contents of fiee/a, pausing after each record.

LIST PROGRAM/CMD (PRT)

Lists the file program/cmd to the Printer.

LOAD
Load a Program File

load file

Hie is a file specification for a file created by the dump command

This command loads a machine-language program file into memory. After the

file is loaded, trsdos returns to the trsdos ready mode.

You cannot use this command to load a basic program or any file created by

basic. See the basic Reference Manual for instructions on loading basic

programs.

Note: The file must load into the user area (X'7000'-top).

Examples

LOAD PAYROLL/ PT1

Sample Use

Often several program modules must be loaded into memory for use by a master

program. For example, suppose payrouvpti and payroee/pt2 are modules, and

menu is the master program. Then you could use the commands:

LOAD PAYR0LL/PT1

LOAD PAYR0LL/PT2

to get modules into memory, and then type: MENU to load and execute menu.

54

TRSDOS

MASTER
Set Master Read/Write Drive

MASTER (DH1Vi = a)

a is the drive specification. If omitted Drive is set as the master drive,

This command allows you to assign a specified drive as the Master Read or

Write drive in the system. When searching for a file, trsdos will start with the

master drive.

If the file is not found on the specified drive, trsdos will continue searching on

the next higher-numbered drive.

Example

After you enter the command: MASTER (DRIVE = i) Drive 1 becomes the

master drive.

PATCH
Change the Contents of a Disk File

^k^p'Ui^=
:
^aKfmn = bb,cm - cc)

///^ is the file specification

add -aaaa specifies the address at which the data is found, aaaa is a four-

digit hexadecimal number.

find ~bb specifies the string you wish to find (or compare to), bb is a

hexadecimal sequence.

chg = <# specifies the new contents for the byte(s). cc is a hexadecimal

sequence.

Note: This utility is for machine language programs only.

55

TRS-80 MODEL III DISK SYSTEM

This command lets you make minor corrections in any disk file, provided that:

1

.

You know the existing contents and location of the data you want to change.

2. You want to replace one string of code or data with another string of the

same length.

You can use patch to make minor changes to your own machine-language

programs; you won't have to change the source code, re-assemble it, and re-

create the file.

Another application for patch is to allow you to implement any modifications to

trsdos that may be supplied by Radio Shack. That way, you do not have to

wait for a later release of the operating system.

Sample Use
Suppose you want to change seven bytes in a machine-language program file.

First determine where the seven-byte sequence resides in ram when the program

is loaded. Then make sure your replacement string is the same length as that

of the original string. For example, you might write down the information

as follows:

File to be changed: vread

Start address: x'528(r

Sequence of code to be changed: x ,CD2D25E.v

Replacement code: x* 00000009*

Then you could use the following command:

PATCH VREAD (ADD=528B >FIND=BCD2D25E5 >CHG=00000009)

PAUSE
Pause Execution for Operator Action

pause message

message is the message to be displayed during the pause execution. Ihis

is optional. If omitted, pause will be displayed by itself.

56

TRSDOS

This command is intended for use inside a do file so trsdos can print a message

or reminder.

To continue after the pause, trsdos prompts you with the message:

PRESS < ENTER) TO CONTINUE

Example

PAUSE INSERT DISKETTE #21

trsdos displays pause, next the message and then prompts you to press CENTER)

to continue execution.

PAUSE

PRESS < ENTER)- TO CONTINUE

trsdos displays pause and then next prompts you to press (ENTER) to continue.

See build and do for sample uses.

PROT
Use or Change a Diskette's Master Password

PROT;tf(PW,LOCK)

:d is an optional drive specification. If omitted, Drive is used.

m tells trsoos you want to change the master password.

lock tells trsdos to assign the master password to all unprotected user

files. If omitted, the unprotected files remain unprotected.

prot lets you use the master password to protect all unprotected files at once, or

to change the master password.

The master password will be needed to backup the diskette, so be sure to

remember it!

Note: The master password on the trsdos factory-release diskette is password.

57

TRS-80 MODEL III DISK SYSTEM

Examples

PROT s(3 (PW

Tells trsdos to change the master password on the Drive diskette, trsdos will

prompt you first for the old master password, then for the new master password.

PROT si (LOCK)

Tells trsdos to as:

will first prompt you for the master password

Tells trsdos to assign the master password to all unprotected user files, trsdos
will first nromnt vou for the master password.

PURGE
Delete Files

purge :d (file-type)

:tf is the drive whieft contains the disk to be purged.

file-type must be one of the following:

sys Ali System and User files (no Invisible)

m All Invisible and User files (No System)

all All files on disk (User, System, Invisible)

If file-typen omitted; trsdos defaults to User files.

This command allows quick deletion of files from a particular diskette. To use

purge, you must know the diskette's master password, (trsdos System
diskettes are supplied with the password password.)

When the command is entered, trsdos will ask for the diskette's password.

Type in up to eight characters. Press CENTER] if you typed fewer than eight

characters. The System will then display user filenames one at a time,

prompting you to kill or leave each file.

Example

PURGE :1

trsdos will purge user files from Drive 1 . This would include basic programs.

PURGE :1 (I NY)

trsdos will purge all invisible files in Drive 1

.

58

TRSDOS

Note: System diskettes contain some files which are not shown in any of the

directory listings. You may delete these files with a special form of purge:

mm* :d (file-type)

The asterisk tells trsdos to ask you if you want to delete the System files. If

you do delete them, the diskette becomes a data diskette and may only be used

in Drive 1, 2 or 3.

The other parts of this command are as explained previously. However, be sure

to do the purge using Drive 1, 2 or 3, since the diskette will become ' 'non-

system' ' during the purge.

RELO
Change Where Program Loads into Memory

file is the file specification,

the user area of ram.

This command allows you to change the address at which the program loads into

memory. It does not change the program itself.

Note: This command may be useful in conjunction with dump.

Example

RELO PROGRAM/CMD (ADD=G578)

trsdos will load the program program/cmd at the new memory address

of 6578.

59

TRS-80 MODEL III DISK SYSTEM

RENAME
Rename a File

atdfiame is the did file name.

wwmme is the new file name.

The file name may Include a drive specification and or password.

The new file nams should not include a drive specification or password.

This command lets you rename a file or program. Only the name/extension

is changed; the data in the file and its physical location on the diskette

are unaffected.

rename cannot be used to change a file's password protection. Use attrib

to do that.

rename also checks to see that the intended new name does not duplicate a

filename currently on the same diskette. If it does, the command is cancelled

and an error message is displayed.

Examples

RENAME MATHPAK MATHPAK/BAS

Tells trsdos to add the extension to the filename.

RENAME ABCDE/DAT ABCDEF/DAT

Tells trsdos to change the filename only.

RENAME PAYROLL 1 /TXT* GBR PAYR0LL2/TXT

Tells trsdos to change the filename; the password is retained automatically.

RENAME FILE1:3 FILE2

Tells trsdos to change the filename of the file on Drive 3.

60

TRSDOS

ROUTE
Routing I/O Devices

ROUTE ($0UBCe= 3a,D£$T!N ~ bb)

source = aa specifies the source i/o device.

destin = bb specifies the destination i/o device.

aa and bb may be any meaningful combination of the following two-letter

abbreviations:

DO (Display)

PR (Printer)

KB (Keyboard)

m (RS-232 Input)

m (RS-232 Output)

If the source and destination options are omitted, trsdos resets i/o Drivers

to their original i o routes. The source and destination devices must both be

output or both be input.

This command allows you to route i/o devices automatically. For example,

trsdos can route information from the Printer (PR) to the Display (DO).

Note: route cannot be used in conjunction with the dual command.

Examples

ROUTE (SOURCE=PRtDESTIN=DO)

trsdos will route your Printer output to the Display.

ROUTE

f/o drivers are returned to their original state.

For further details on routing i/o see "Routing Input/Output" in the

Model III Manual.

61

1TRS-80 MODEL III DISK SYSTEM

SETCOM
Set Up RS-232-C Communications

setcom (off.woro = a.BAUD = *,stop = cparity = d,mode)

word = a is the number of bit/byte desired, a must be either 5, 6, 7, or 8,

and 9600. If omitted, the baud rate is not changed.

stop=c specifies the number of stop bits, c must be either 1 or 2. If

omitted, stop bits are not changed.

parity =rf determines whether the parity is odd, even, or none, d must be 3

This command initializes rs-232-c communications via the serial channel. Before
executing it, you should connect the communications device to the Model III.

See the Model III Operation Manual for a description of rs-232-c signals used.

See Using the RS-232-C Interface in the Model III Manual for further details.

Examples

SETCOM (WORD=7»BAUD=300»STOP=1 »PARITY=3 tWAIT)

This would set the RS-232-c to seven bit words, 300 baud, one stop bit, no parity,

and place it in the wait mode.

SETCOM

The command without specifications will display the current settings.

The following program will allow you to use your Computer as a terminal. For
further information, refer to the Operation section of your Model III Operation
Manual.

Note: This program executes at 300 Baud.

62

5 DEFINT A-Z 'INTEGER VARIABLE FOR SPEED

10 POKE 1G890* 'DON'T WAIT FOR SERIAL I/O

15 POKE 16888* (5*16)+5 'TX/RCU AT BAUD RATE 300

20 DEFUSRO = &H005A: REM BET UP CALL TO $RSINIT

40 X = USR0(0)

B0 DEFUSRI = &:H0050

G5 DEFUSR2 = &:H0055

70 CI = 16872 'CHARACTER INPUT BUFFER

80 CO = 16880 'CHARACTER OUTPUT BUFFER

90 ' CHECK FOR SERIAL INPUT

110 X = USRK0) 'CALL $RSRCV

120 C$ = CHR*(PEEK(CI)

)

'LOOK AT INPUT BUFFER

130 PRINT C$ 'IF C = 13. NOTHING HAPPENS

140 ' CHECK FOR KEYBOARD INPUT

150 C$ = INKEY$

1G0 IF C$ = "" THEN 110 'NO KEY* SO GO CHECK SERIAL

185 PRINT C$: 'SELF ECHO

170 POKE CO* ASC(C$) 'PUT CHARACTER INTO OUTPUT BUFFER

130 X = USR2(0) 'CALL $RSTX

200 GOTO 110 'GO CHECK SERIAL INPUT

TRSDOS

^«**^«^^^;, :

TAPE
Tape/Disk Transfer

tape (s

=

source, o = destination)

soumemA destination are abbreviations for the storage devices to

boused:

t Tape

o Disk

n Random access memory

Note: tape can only be used with machine-language programs, basic

programs must be ciOAoed and csAVEed.

This command transfers z-80 machine-language programs from one storage

device to another. The following transfers are possible:

• Tape to disk

63

iTRS-80 MODEL III DISK SYSTEM

• Disk to tape

• Tape to ram

Examples

TAPE <S=TfD=D)

Starts a tape-to-disk transfer, trsdos will prompt you CASS?. Select the desired
baud rate (H for high, L for low), trsdos will then prompt you to press (ENTER!
when the recorder is ready to play to the Computer. When you press CENTER] , the
tape will begin loading.

Note: If no asterisks flash, the recorder volume may need adjustment or the
baud rate setting may be incorrect.

trsdos will read the file name from the tape and use that name for the disk file.

It will copy the program to the first write-enabled diskette, starting with the
master drive (see master).

TAPE (S=D»D=T)

Starts a disk-to-tape transfer, trsdos will prompt you for the desired cassette
baud rate, then for the diskette file specification. Then it will tell you to press
^NTER) when the cassette recorder is ready to record from the Computer.

TAPE <S=T*D=R)

Starts a tape-to-RAM transfer, trsdos will prompt you for the cassette baud rate,

and will tell you to press (ENTER) when the recorder is ready to play to the

Computer. After loading the program, trsdos will begin execution at the

transfer address specified on the tape.

TIME
Reset or Get the Time

imzhh:mm:$$

hh:mm:$$ specifies the hour hh, minute mm, and second $$.

Each mm be a tw-riigit dermal number between the following ranges;

hh 0-23

mm 6-59

$$ 0-59

nhh:mm:$$\$ given, trsdos resets the time.

If hh:mm:$s is not given, trsdos displays the current time.

64

This command lets you reset or display the time.

Time uses a 24-hour clock. For example, 1:00 P.M. is displayed as 13:00.

You initially set the time when trsdos is started up. After that, trsdos updates

the time automatically, using its built-in clock.

When you request the time, trsdos displays it in this format: 14 s 15 s 31 for

2:15:31 P.M.

Examples

TIME

Displays the current time.

TIME 13:20:00

Resets the time to 1:20:00 P.M.

Note: If the clock is allowed to run past 23:59:59, it will re-cycle to zero, the

date will be incremented, and the clock will continue to run.

TRSDOS

WP
Write-Protect Via Software

d specifies the disk drive to be protected, if omitted, all drives will be

unprotected.

Diskettes can be protected from being overwritten by this command. It is a

software write-protect rather than a hardware write-protect (such as the write-

protect tab on the diskette).

Only one drive may be protected at a time.

To unprotect a drive, making it accessible to writing, simply enter the command

wp without options or with a different drive number specified. The wp command

will not override a write-protect tab.

65

TRS-80 MODEL Ml DISK SYSTEM

Examples

WP (DRIME=i)

trsdos will write-protect the disk in Drive 1

.

WP

trsdos will eliminate write-protection on all drives.

66

TRSDOS

TRSDOS Utility Commands

BACKUP
Create an Exact Copy of an Original Disk

rsaerr^a^

backup copies the contents of the source disk to the destination disk. This gives

you a "safe" copy of the disk. Always keep an extra copy of data or programs

you have stored on your disks.

Note: Both source and destination diskettes must be write-enabled.

trsdos will prompt you at each step after you type: BACKUP

If you omitted the source/destination-drive numbers, trsdos will begin with the

prompts: SOURCE DRIVE NUMBER.

Type in the number of the drive that contains the source diskette and press

(EWTER) .

DESTINATION DRIVE NUMBER?

Type in the number of the drive that will contain the destination diskette and

press CENTER] .

SOURCE DISK MASTER PASSWORD?

Type in the password assigned to your source diskette.

DISK CONTAINS DATA* USE DISK OR NOT?

Type in Y (Yes) or N (No).

DO YOU NISH TO RE-FORMAT THE DISK?

Type in Y (Yes) or N (No).

67

j

TRS-80 MODEL III DISK SYSTEM

If you specified the source/destination drives, trsdos will request the

password, skipping the first two steps.

trsdos will then take charge of formatting and verifying the destination disk as

well as letting you know if there are any errors or flawed tracks.

CONVERT
Model I to Model III File Conversion Utility

CONVERT

Model I formatted diskettes cannot be used in the Model III Disk System.

However, the convert utility can read a Model I diskette and copy its non-

system files onto a Model III trsdos diskette. This diskette may then be used

normally in the Model III Disk System. The original Model I diskette may still

be used in a Model I Disk System, since it is unchanged by convert.

convert does not convert or change data; it converts the file storage format.

For this reason, Model I Disk basic programs may require slight changes before

they will run properly in the Model III Disk System. Model I machine-language

programs may require major or minor changes before they will run in the Model
III Disk System, You may make these changes on the Model I diskette before

using convert, or on the Model III diskette containing the converted files.

For hints on program conversion, see:

• Technical Information in this manual

• Technical Information in the Model III Manual

• The manual, Instructions for Converting Specified Model I Programs for use

on trs-80 Model III.

Drive Usage

In two-drive systems, the files must be copied onto a Model III system diskette

in Drive 0; in three- or four-drive systems, the files may be copied onto a data

diskette in Drive 1, 2 or 3.

During the conversion process, the Model I diskette is referred to as the
'

'source"; the Model III diskette, the ''destination/' The source diskette cannot

be in the same drive as that of the destination diskette.

68

TRSDOS

Password Protection

convert is designed to preserve the password security of each file that it

transfers. To accomplish this and still allow the copying of protected files,

convert follows different procedures depending on the access and update

passwords on each file.

In the simplest case, a file has blank access and update passwords. The copied

file will be given blank passwords. (If you have a Model I Disk System with

trsdos 2.3, you may use the prot command to remove all passwords from all

files. This will simplify the convert process. Do this on the Model I system

before you attempt to convert to Model III.)

In another case, the access and passwords are different. If the access password

is blank and the update is not, then trsdos will prompt you for the update

password. If you know the update password, type it in. The file will be copied

with access and update passwords set to the old update password. If you don't

know the update password, simply press (ENTER) . The file will be copied with the

access password set to blanks and the update password set to an unknown value.

If the access and update passwords are not blank and they are not the same,

trsdos will not copy the file , but will print the message , FILE SKIPPED, and

continue with the next file in the source directory.

Sample Use

Get the Model I diskette ready. If you have a Model I Disk System with trsdos

2.3, try to remove all passwords from all your files. This will prevent any

problems with passwords. The password protection may be restored with the

Model III attrib or prot commands after the conversion is complete.

Using the Model III Disk System, you must always have a Model III trsdos

diskette in Drive 0. trsdos ready should be displayed. Type: CONVERT (ENTER) .

The program will ask, SOURCE DR I YE?. Type in the number of the drive

containing the Model I diskette, and press (ENTER) . Then the program will ask,

DESTINATION DRIVE?. Type in the drive number and press (ENTER)- In two-

drive systems, you must use Drive as the destination.

During the conversion process, the name of each file will be displayed as it is

copied. If password information is needed, trsdos will prompt you for it. If

you know the update password, type it in and press (ENTER) . The file will be

copied and given the same update password. If you do not know the update

password, simply press (ENTER) , in which case the file will be copied and given

an unknown update password.

If a file name on the source diskette is already used on the destination diskette,

trsdos will print this message: FILE EXISTS* USE IT?. If you type Y,

trsdos will copy the file. The previous contents of the Model III file will be

lost. If you type N, trsdos will skip the file, and get the next one from the

Model I diskette.

69

TRS-80 MODEL III DISK SYSTEM

FORMAT
Prepare a Data Diskette

format:*?

:tf specifies the disk drive whleh contains the diskette to be formatted. If

:

Is omitted, imm$ will prompt

This command lets you prepare data diskettes (either new or disks which contain

undesired data or programs), leaving a maximum amount of space for your

program and data files.

Note: Data diskettes may only be used in Drives 1 , 2, and 3 except during a

BACKUP Or FORMAT.

format takes a blank (new or magnetically erased) diskette, records track/sector

boundaries on it, then initializes it with and creates a directory.

When format detects a non-blank diskette, it will display a warning message:

DISK CONTAINS DATA t USE DISK OR NOT?

Type Y (Yes) and press (ENTER) if you do want to reformat, N (No) and press

(ENTER) if you want to save the disk information.

format will lock out any defective tracks to prevent data from being lost in

these areas.

If you begin to get read errors during access, reformat the disk.

Example

FORMAT ;

1

After you are prompted for DISKETTE NAME? and MASTER PASSWORD?,

trsdos will format Drive 1

.

70

TRSDOS

I

HERZ50
Set Up for 50 Hz AC power (non-USA users)

starts Vm utility to change the system for 50 Hz operation, mmm is a bo-
:

::>r- fife.

This utility is provided for customers in areas where the AC power is 50 rather

than 60 Hz. It should not be used by any other customers, herzso simply places

a patch on the diskette that changes the clock speed for 50 Hz users.

herzso is a do file that makes a change in the software of trsdos. Only the

Drive diskette is changed. Be sure it is write-enabled before you start the do-

file. Once the herzso change is done, it will remain in effect for that diskette.

To perform the change, type:

DO HERZ50

Once the change has been made, you will need to reset the system to put the

change into effect. This loads the new software into ram.

LPC
Line Printer Control

LPC

The lpc utility program allows trsdos to ignore multiple carriage return

commands. Without lpc, a top-of-form (LPRiNTCHR$(i2)) command will add an

extra carriage return/line feed each time it is executed. Also, lpc masks the high

bit of each data byte, allowing you to send certain intercepted codes to the

printer. For instance, the basic statement lprintchr$o40) will send code 140-

128= 12 (LPRiNTCHR$(i2)) to the Printer.

71

TRS-80 MODEL III DISK SYSTEM

The printers that require lpc are:

Line Printer III (26-1156)

Line Printer VI (26-1166)

Daisy Wheel WP50 (26-1157)

Qume Daisy Wheel (26- 1157A)
Daisy Wheel II (26-1158)

and all future printers.

Printers that do not require lpc:

26-1150, 1152, 1153, 1154, 1159, and the a version of lpiii (26-1 156A).

You must load the lpc program before you load an application program. The
easiest way to do this is to copy lpc onto your data/program diskette and then
use the auto command to load lpc automatically each time you use the system.
For instance, type:

COPY LPCsi :0 (ENTER)

Then, to make lpc an auto command on the diskette, type:

AUTO LPC/CMD CENTER!

Whenever you use your program diskette, lpc will automatically load into

memory and you can use the program as usual.

lpc locates into the highest available memory. There is no need to set MEMORY
SIZE to protect lpc. It "hides" itself. However, you still need to set memory if

required by your application program, lpc will be killed if the clear command
is used.

Warning: Once the lpc utility program is loaded and installed, you should not
reload it except after a reset. Reloading re-installs the program and uses up more
space each time! lpc will not execute if the Printer has been routed elsewhere.
Also, if lpc has been executed and then the Printer is routed elsewhere, the
original printer driver will regain control after the routing.

MEMTEST
Test Memory

MRSfiSf

This program tests your Model Ill's memory (read only and random access). In

trsdos ready, just type MEMTEST and press (ENTER) .

72

TRSDOS

The program automatically tests all memory locations, no matter what memory
size you have. First it checks read only memory (rom); if everything is okay, it

automatically goes on and checks random access memory (ram). If all ram
checks out okay, the program continues.

If the program detects a rom or ram error, it will display a detailed message.

Repeat the test to make sure it is a valid error condition. Write the message

down and contact your nearest Radio Shack for assistance.

Note: memtest changes the entire contents of ram. Before running it, be sure

you have saved any valuable code you may have in ram.

XFERSYS
Transfer System Files

XFERSYS

xfersys lets you upgrade your version of Model III trsdos by copying all

system files from a new release diskette (source) onto a previously released

diskette (destination) (i.e., version 1.2 to version 1 .3, etc.).

System files which already exist on the destination diskette are replaced by those

from the source diskette. Files which do not exist on the destination diskette are

added. User files (program and data) are unaffected.

Steps to upgrade a diskette

Make backup copies of all diskettes to be upgraded. This is an important

precautionary step. These backup copies should be kept until the upgrading

process is complete and confirmed.

Note: Both source and destination diskettes must be write-enabled.

Insert the new release of trsdos into Drive and press the reset button. Then

type XFERSYS CENTER) .

After the program heading appears, trsdos will prompt you with DISKETTE TO

CONVERT READY IN DRIVE i (Y/Q)?. Type Y (yes) or Q (quit) and press

[ENTER) .

The upgrading process will then take place. When the process is complete,

trsdos will tell you so and take you back to trsdos ready.

Note: If an error occurs, including your trying to upgrade a non-system diskette,

the operation will be cancelled and take you back to trsdos ready.

73

TRSDOsili

granules after the one containing the file's eof mark, are recovered and returned

to the system when the file is closed.

ATRSDOSfile

FILE:

LRN1 LRN2 LRN3

EXTENT 1

LRNN EOF

EXTENT 2

SEGMENT: GRANULE 1 GRANULE 2 GRANULE 32

GRANULE: SECTOR X SECTOR X +

1

SECTOR X + 2

BYTE1 BYTE 2 BYTE 3 BYTE 256SECTOR:

LRN: Logical Record Number, used to specify an individual, user-defined

logical record. Such a logical record is the smallest unit of

information which can be addressed during disk input/output (a

physical record is the unit which is actually read from or written to

disk).

File: A group of logical records; the largest unit of information which can

be addressed by a trsdos command.

Sector: A physical record, composed of 256 contiguous bytes.

Granule: The minimum allocatable unit of storage for any file.

Extent: One contiguous allocation of granules.

System Routines for Assembly-Language I/O

This information is provided for customers who wish to write their own
assembly level i/o routines. An explanation of the calling sequence and

parameters for each necessary i/o routine is given. A knowledge of z-80 machine

code is assumed.

The following notations are standard in this section:

(HL) = xxxx Registers hl contain the address of (point to) xxxx in machine

format. (If address of xxxx = 34B2H then the values in the

registers are: h = 34; l = B2). Other register pairs will also be

indicated this way.

a = xx Register a contains the numeric value of xx in binary form.

Register a is used to return the trsdos error code for i/o calls.

A complete list of error codes and their meanings appears at

the end of this chapter. Other registers will also be indicated

this way.

75

TRSDOS

DCB while $OPEN

Address Length Explanation

DCB + 3 Reserved

+ 3 2 Physical Buffer address (lsb/msb)

+ 5 Offset to delimiter at end of current record

+ 6 File drive number residence

+ 7 Reserved

+ 8 eof offset of last delimiter in last physical record

+ 9 lrl (logical record length)

+ 10 2 nrn (next record #— $open sets = x'ooocr— lsb/msb)

+ 12 2 ern (ending record #— (last in file) lsb/msb)

+ 14 50 Reserved

NRN Next Record Number defines which record is to be read or written by the

next system call for $read or $write. It is automatically incremented by one

after each system call. In order to process random files, use the $posn call to

direct trsdos to the record you wish to transfer next.

ERN Ending Record Number is the last record number currently in the file. It

is put into the directory at $close time, so if it is expected to be correct, the user

must close his files after adding records to a file. This value may also be used to

position to end of file so that new records may be added to the end of the file. To

position to the end of file use a call to $posn with a record number of ern + l

.

$posn is described later.

Physical and Logical Records in TRSDOS

A physical record is defined as one sector of disk. One sector of disk contains

256 user data bytes. The artificial term '"granule" is defined to be 3 sectors of

disk space. There are 6 granules on each of the 40 tracks on the disk. A granule

is the least amount of space allocated by trsdos. For programming purposes,

the physical records in a file are numbered from to N. The largest record

number (N) in a file will then be 3 times the number of granules allocated minus

one ((3*G) - 1). All trsdos granule allocations are made as needed at the time

of write, not when the file is created.

Bytes Sectors Granules Tracks Disk

. 256 1
— —

768 3 1
—

4608 18 6 1

184320 720 240 40

Disk Space Table: For each 5 lA'
f

Disk Drive

A logical record is defined by the user of trsdos. It may be anywhere from 1 to

255 bytes in length. Once a file is opened with a specific lrl (Logical Record

77

"1TRS-80 MODEL III DISK SYSTEM

Length), the length is fixed until the file is closed. To change a file's lrl, you

must close it and re-OPEN it with the new lrl.

Each opening of the file sets a single, fixed record-length, trsdos will "block"

logical records into (or from) one physical record for maximum space utilization

on the disk.

Blocking is putting more than one logical record into one physical record. For

instance, four 64-byte logical records will fit into one 256-byte physical record.

A logical record may be broken into two parts by trsdos in order to fill the last

portion of one physical record entirely before beginning to use the next physical

record (i.e. records are spanned). This occurs when the physical record length is

not an even multiple of the logical record length.

If the user wishes to do his own blocking, he may specify a logical record length

of bytes at the time of init/open and must himself manage the contents of the

physical record buffer area of 256 bytes, trsdos will not move a logical record

for the user if lrl = 0; in this particular case it will only read/write the physical

record to/from the buffer. Once control is shifted to your program, you will have

about 20 bytes of stack size left.

Fundamental TRSDOS I/O Calls

There are 17 fundamental trsdos routines involved in handling file i/o. These

are:

$BACKSPACE $POSN
$CLOSE $PUTEXT
$DIVIDE SRAMDIR
$DMULT $READ
$FILPTR $REWIND
$INIT $SYNTAX
SKILL $VERF
$OPEN $WRITE
$POSEOF

The detailed calling sequences and discussions for each of these routines follow.

Note that all of these system calls use register f and do not restore its value

before return. In order to apply this data properly, you should read through all of

these descriptions and clear up all of the points that are not obvious to you by

using other reference materials. If you are successful in doing this you will find

that trsdos is a workable tool for your programming ideas.

$INIT— 17440/X'4420'

$init is provided as an entry point to trsdos which will create a new file entry

in the directory and open the dcb for this file. $init scans the directory for the

filespec name given in the dcb. If the filespec name is found, $init simply opens

78

TRSDOS

the file for use. If the name is not found, a new file is created with the filespec

name.

Entry Conditions

(HL) = buffer (see beginning of this section for notation)

(DE) = DCB

B = LRL

CALL $INIT

Exit Conditions

iy — changed

z = OK
c carry flag is on if a new file was created

a = trsdos error code. (Error codes listed at end of this chapter)

$OPEN— 17444/X'4424'

$open provides a way to open the dcb of a file which already exists in the

directory. The dcb must contain the filespec of the file to be opened before entry

to $open.

Entry Conditions

(HL) = BUFFER

(DE) = DCB

B = LRL

CALL $OPEN

Exit Conditions

Z = OK
z = if file does not exist.

a = trsdos error code.

iy = changed

$POSN— 17474/X'4442'

$posn positions a file to read or write a randomly selected logical record. Since

it deals with logical records, the proper computation is done to locate which

physical record(s) contain the data. Following a $posn with a $read or $write

will transfer the record to/from ram.

79

TgSDOS

in order to satisfy the request, it will do so. "Spanning" will be handled by

trsdos as necessary. At $init $open time the dcb value of nrn is set to x'oooo*

so that the first record will be written. After each logical record is transferred,

the nrn value in the dcb will be incremented by 1

.

If lrl = o, $write transfers one physical record from buffer into the disk file

using the nrn in the dcb. buffer is defined at $init/open time only. The dcb

value nrn is updated as above, after the write.

Entry Conditions

(HL) = urec if lrl is not zero. Unused if lrl = o

de = dcb

call $write

Exit Conditions

Z = OK
a = trsdos error code.

$VERF— 17468/X'443C'

The only difference between $verf and $write is that $verf writes one physical

record to disk and then reads it back into a special trsdos ram area not defined

by the user. This special area and the original write buffer are then compared

byte by byte to assure that the record was successfully written.

Entry Conditions

(HL) = Same as $write above.

(DE) = DCB

CALL $VERF

Exit Conditions

Z = OK
a = trsdos error code.

$PUTEXT— 17483/X'444B'

This routine will add an extension to a filename if an extension does not already

exist. An extension to a filename may be useful for identifying the type of data

in the file.

81

TRSDOS

Entry Conditions

(DE) = DCB

CALL $POSEOF

Exit Conditions

z = Good file specification

nz = Bad file specification

$SYNTAX— 17436/X'441C'

Move a file specification to dcb. This routine takes a file specification and

checks it for validity and moves it to a dcb so that the file may be opened.

Entry Conditions

(HL) = Filename

(DE) = DCB

CALL $SYNTAX

Exit Conditions

z = Good file specification

nz = Bad file specification

$DIVIDE— 17489/X'4451

'

The divide routine takes a 16-bit dividend and an eight-bit divisor. After

division, the quotient replaces the 16-bit dividend and the remainder replaces the

eight-bit divisor.

Entry Conditions

hl = Dividend

a = Divisor

CALL $DIVIDE

Exit Conditions

hl = Quotient

a = Remainder (0 indicates no remainder).

83

TRS-80 MODEL III DISK SYSTEM

$DMULT— 17486/X'444E'

The multiply routine uses a 16-bit multiplicand and an eight-bit multiplier. After

multiplication takes place, the product replaces the 16-bit multiplicand.

Entry Conditions

hl = Multiplicand

a = Multiplier

CALL $DMULT

Exit Conditions

h = High order byte

l = Middle order byte

a = Low order byte

H L A

High Middle Low

$RAMDIR— 17040/X'4290'

This routine allows you to examine a diskette directory (one entry or the entire

directory) or the diskette's free space. The information is written into a user

specified ram buffer.

Only non-system files will be included in the ram directory.

Entry Conditions

hl - ram Buffer. If c = 0, size = 1761 [max #*22+ 1]. If c=i to 96,

size =22. If c = 255, size = 64.

b = Specified drive number

c = Function switch:

Contents of C

1-96

255

CALL $RAMDIR

Results

Gets entire directory into ram. (See ram Directory Format).

Gets one specified directory record into ram, if it exists. (See

ram Directory Format).

Gets free-space information (See ram Directory Format).

Exit Conditions

nz = Error occurred.

z — No error. (HL) = directory or free-space information.

84

RAM Directory Format

The directory is made up of records, one per file. All values are hexadecimal.

Each record placed in user ram is in the following format:

Byte Number Contents

0-14 filename/ext:d (left-justified followed by spaces)

15 Protection Level, binary 0-6

16 Byte eof, binary 0-255

17 Logical record length, binary 0-255

18-19 Last sector number in file, binary lsb, msb

20-21 Number of Granules allocated (LSB,msb) binary

22 " + " (marks the end of directory list after entire directory.)

Free Space Message Format

nnnnn Free Granules

Where nnnnn is a decimal number. The entire message is ASCII-coded.

$FILPTR— 17037/X'428D'

This routine provides information on any user file that is currently open. It

enables you to obtain the drive number and the logical file number for any file

and should be used in conjunction with $ramdir.

Entry Condition

(DE) = Data Control Block (dcb) defined when file was opened.

CALL SFILPTR

Exit Conditions

nz = Error occurred.

z = No error. The following registers are set up:

B = Which drive contains the file (0,1,2, or 3).

c = Logical file number (1-96)

Note: This operates with user files only.

$CLOSE— 17448/X'4428'

$close closes a file from the last processing done. It is very important to do

a $close on every file opened before the program ends. If you do not close

a file, the directory entry for this file is incorrect if any new records have been

85

TRSDOS

$DATE— 12339/X'3033'

$TIME— 12342/X'3036'

These routines return the date and time in ascii format:

Date: mm/dd/yy

Time: hh/mm/ss

Entry Conditions

(HL) = Eight-byte buffer to receive the date/time text

CALL $DATE

CALL $TIME

Exit Conditions

(HL) = Date or time text

$DATLOC— 16922/X'421A'

$TIMLOC— 16919/X'4217'

These locations store the date and time in binary format:

$datloc (Three bytes): yy dd yy

$timloc (Three bytes): ss mm hh

$ERRDSP— 17417/X'4409'

This routine displays a trsdos error message determined by the contents of the

accumulator (A). This register contains an error code (0 = no error) after

completion of any system routine.

Entry Conditions

a = trsdos error code (see Table at the end of this section). In a trsdos error

code, bits 6 and 7 are normally reset (off). So serrdsp interprets them as

controls.

Not Set (Normal

Bit # Set Condition)

7 Return to caller upon Return to trsdos upon

completion completion

6 Give detailed error message Give error number only

call $errdsp

87

TRSDOS

$CMDDOS— 17052/X'429C

This routine executes a trsdos command and returns to the caller.

Entry Conditions

(HL) = Text of trsdos command, terminated by xod:

Exit Conditions

All registers are changed.

Caution: trsdos commands will overlay ram up to x'6FFF/

$CMDTXT— 16933/X'4225'

This is the start address of a buffer containing the last command line entered

under trsdos ready. Using this buffer, your program may recover parameters

that were included in the last command line.

For example, given a program named editor/cmd, we want the operator to

select an input file name when the program is loaded and executed from trsdos

ready:

trsdos ready
editor myfile

The program, editor, can recover the name of the file in the scmdtxt buffer.

Note: On entry to a program, (hl) = First non-blank character following the

program name.

$MEMEND— 17425/X'4411'

This storage location contains the highest address available. It is normally the

same as the physical end oPram, but you may change it for special purposes.

The address is in lsb, msb sequence.

89

TRS-80 MODEL III DISK SYSTEM

TRSDOS Error Codes/Messages

No Error Found

1 CRC Error During Disk I/O

2 Disk Drive Not In System

3 Lost Data During Disk I/O

4 CRC Error During Disk I/O

5 Disk Sector Not Found

6 Disk Drive Hardware Fault

7 **Undefined Error Code**

8 Disk Drive Not Ready
9 Illegal I/O Attempt

10 Required Command Parameter Not Found
1

1

Illegal Command Parameter

12 Time Out On Disk Drive

13 I/O Attempt To Non-System Disk

14 Write Fault On Disk I/O

15 Write. Protected Disk

16 Illegal Logical File Number
17 Directory Read Error

18 Directory Write Error

19 Invalid File Name
20 GAT Read Error

21 GAT Write Error

22 HIT Read Error

23 HIT Write Error

24 File Not Found

25 File Access Denied Due to Password Protection

26 Directory Space Full

27 Disk Space Full

28 Attempt to Read Past EOF
29 Attempt to Read Outside of File Limits

30 No More Extents Available

31 Program Not Found
32 Invalid Drive Number
33 "Undefined Error Code"
34 Attempt to Use Non-program File as a Program
35 Memory Fault During Program Load
36 "Undefined Error Code**
37 File Access Denied Due to Password Protection

38 I/O Attempt to Unopen File

39 Invalid Command Parameter

40 File Already In Directory

41 Attempt to Open File Already Open

90

DISK BASIC

Introduction

Start-Up

Under trsdos ready, type:

BASIC fENTER)

trsdos will load basic and begin the "initialization dialog."

If you want to recover a Disk basic program after returning to trsdos for a dir

or other trsdos command, use this command under trsdos ready:

BASIC * (ENTER]

You will go directly to Basic's ready mode without any initialization dialog. If

you had a program in memory, it should still be there. You may not be able to

run the program. To be safe, you should immediately save the program, go to

trsdos, then start basic again (no asterisk).

Note: If you have overlaid user memory while in trsdos, your program will be

erased. In such a case, you should not restart basic, but should use the normal

basic start-up procedure.

Initialization

When you start Disk basic, you are first asked, HON MANY FILES?. This lets

you specify the maximum number of files that will be "open" or in use at once.

(See open.) Type in an appropriate number and press (ENTER), or simply press

(ENTER) and basic will provide for three files.

For example, if your program requires one input file and one output file, you

should ask for two files.

Note: Normally, basic will give all your data files a record length of 256.

(See File Access Techniques.) If you wish to set the record length of each file

individually, use the suffix v for "Variable" after the number of files.

For example,

HON MANY FILES? 3U fENTER)

tells basic to give you three file-buffers, and to let you set the record length of

each file when that file is first opened.

Note: Disk basic automatically creates a buffer for loading, saving, and

merging basic programs. This buffer exists in ram below any data file buffers

you may request. It is always available for program i/o, regardless of how you

answer the files? question.

91

TRS-80 MODEL III DISK SYSTEM

After you answer the files question, basic will ask: MEMORY SIZE? Simply
press (ENTER) without typing a number. You will then have the maximum amount
of ram available for use by basic.

If you will want to load and use machine-language programs or routines, you
will have to protect your basic memory from these machine-language programs.

In such a case, respond with the highest memory address (in decimal form) you
want basic to use for storing and executing your basic programs. Addresses
above the number you specify will then be protected from use by basic.

Example:

MEMORY SIZE? 32000 CENTER]

causes basic to protect addresses above 32000. If you have 16K of ram, this

means that you'll have 32767-32000 = 767 bytes protected for storing your
machine-language routines.

After you answer the MEMORY SIZE? question, Disk basic will display the

following information:

1

.

Which version of Disk basic you are using

2. Copyright information

3. The number of free bytes available

4. The number of concurrent files you have requested.

To exit from Disk basic and return to the trsdos ready mode, type:

CMD"S" [ENTER)

This results in a normal return to trsdos, without re-initialization of the system.

You may recover your program if you haven't changed user memory while in

trsdos. Use basic *.

92

DISK BASIC

Enhancements to Modelm BASIC
Disk basic adds many features which are not disk-related. They are listed below

along with abbreviated descriptions. Detailed descriptions follow in alphabetical

order.

&H
&o
Abbreviations

CMD'A"
CMD"B"

CMD"C"

CMD'D"
CMD'E"

CMD"I"

CMD"J"

CMD"L"

CMD'O"

CMD'T"

CMD"R"

CMD"S"

CMD'T"

CMD"X"

CMD"Z"

DEFFN

DEF USR

INSTR

LINE INPUT

MID$ =

NAME
usrh

Hexadecimal-constant prefix

Octal-constant prefix

Many commands have abbreviations

Return to trsdos with error message

Enable/Disable fBREAKl

Delete spaces and remarks from a program (compression)

Display directory for specified drive

Display previous trsdos error

Return a command to trsdos

Convert calendar date

Load z-80 subroutine or program file into ram

Alphabetizes (sorts) a string array only

Check printer status

Start real-time clock display

Normal return to trsdos (jump to exit routine)

Turn off real-time clock display

Cross-reference of reserved words, string variables, or

strings in a program

Duplicate output to Display and Printer

Define BASic-statement function

Define the entry point for an external machine-language

routine

Instring function; find the substring in the target string

Input a line from keyboard

Replace portion of the target string (used on left of equals

sign)

Renumber a program in ram

Call external routine (n = 0,l,2, . . . ,9)

&H and &O (hex and octal constants)

Often it is convenient to use hexadecimal (base 16) or octal (base 8) constants

rather than their decimal counterparts. For example, memory addresses and byte

values are easier to manipulate in hex form. &H and &o let you introduce such

constants into your program.

&h and &o are used as prefixes for the numerals that immediately follow them:

93

TRS-80 MODEL III DISK SYSTEM

^*iil!iM^^ ' :

""-- '""'" '" '.™^

(fcfcfcfis a 1 to 4 digit sequence composed of hexadecimal numerals

I$|ffl^ &oddddd=&ddddd.

The constants always represent signed integers. Therefore any hex number
greater than &H7FFF, or any octal number greater than &077777, will be

interpreted as a negative quantity. The following table illustrates this:

Octal Hex Decimal

&1 &H1 1

&2 &H2 2

&77777 &H7FFF 32767
&100000 &H8000 -32768
&1 00001 &H8001 -32767
&1 00002 &H8002 -32766
&177776 &HFFFE -2
&177777 &HFFFF -1

Hex and octal constants cannot be typed in as responses to an input prompt

or be contained in a data statement. Often the hex or octal constant must be

enclosed in parentheses to prevent a syntax error from occurring.

Examples

PRINT &H5200, &O51000

prints the decimal equivalent of the two constants (both equal 20992).

POKE &H3C00, 42

puts decimal 42 (ascii code for an asterisk) into video memory address hex

3C00.

94

Model III Disk BASIC Abbreviations

Abbreviation Meaning

® List Previous Program Line

© List Next Program Line

CD List Current Program Line

CD Edit Current Program Line

[SHIFT)W List First Program Line

(SHIFT) () IZJ List Last Program Line

LXX List Program Linexx

EXX Edit Program Line xx

DXX Delete Program Linexx

AXXX,XXXX Automatic Line Numbering Beginning at Linexxx
;

Incrementing byxxxx.

CMD "A"
Return to TRSDOS

m{

This command allows you to return to trsdos with an error message:

OPERATION ABORTED

Sample Use

After an input/output error occurs in a basic program, you might want to exit to

trsdos and print a message.

CMD "A"

the following will be displayed:

OPERATION ABORTED

TRSDOS READY

95

TRS-80 MODEL III DISK SYSTEM

CMD "B"
Enable/Disable BREAK Key

%va» "euiHnh"

switilih either on or off, switch must be enclosed in quotation rtiarks.

This command enables or disables the (BREAK) key. While the function is "off,"

the (BREAK) key will be ignored except during cassette or printer output or during

serial input/output.

The (BREAK) key will remain disabled even after the program has ended. To

enable the (BREAK) key, use the cmd-B'Y'ON" command. Returning to trsdos

via the cmd'^S" or cmd"I" commands will also enable the (BREAK) key.

Examples

CMD"B M ,"0FF"

Disables the (BREAK) key.

CMD"B" *"0N H

Returns the (BREAK) key to its normal function.

CMD "C"
Compress Program

;43i6^ ,.: /-
.

? ^ spaces are deleted. If only one is

fjif)^^ action is taken.

This command allows you to compress a program so that it requires less

ram and less storage space on diskette. You can elect to remove all remark

96

DISK BASIC

statements (beginning with rem or ') or to delete all spaces between basic

keywords. Spaces inside quotes will not be deleted.

Example

Your program reads as follows:

850 RESTORE; ON ERROR GOTO 800 'DOG PROGRAM

8G0 READ COMPANY* 'PET STORE

870 PRINT RIGHT$(C0MPANY$*2) *: GOTO 8S0

880 END

If you want to delete the Remarks (lines 850 and 860), type in the command:

CMD n C" tR

and the program will now read:

850 RESTORE: ON ERROR GOTO 800

8G0 READ COMPANY*

870 PRINT RIGHT$(C0MPANY$>2> *:G0T0 880

880 END

If you then wanted to delete the spaces, type in:

CMD"C" *$

and the program would read:

850 RESTORE : ONERRORGOTO800

8S0 READCOMPANY$
870 PRINTRIGHT$(C0MPANY$*2> ,:GOTO860

880 END

You could obtain the same results by typing:

CMD"C"

Note: Always provide the closing quotes on string literals in your basic

program. Otherwise cmd"C" may not function properly. For example, in

10 PRINT "THIS IS A TEST"

the second quote should be used even though omitting it will not cause an error.

CMD"D"
Display the Directory of a Specified Drive

"D:d"

6 is the drive specification

97

TRS-80 MODEL III DISK SYSTEM

By entering the command cmdud:J", you can obtain a specified diskette's

directory from basic without returning to trsdos. Only unprotected, visible

files will be displayed. The drive specification is not optional and must be

specified for all drives, including Drive 0.

Example

If you type in the command;

CMD n D:i"

the directory for Drive 1 will be displayed.

CMD"E"
Display Previous TRSDOS error

CMD"E"

This command displays the last trsdos error message. If no errors have

occurred prior to the command, the message NO ERROR FOUND will be

displayed.

Example

If you have a two-drive system (0 and 1) and you type:

SAVE "PROGRAM: 3"

Disk basic will return a DISK I/O ERROR. To find out what kind of i/o error

occurred, type: CND'-E" fENTERl and Disk basic will return with DISK DRIVE
NOT IN SYSTEM.

CMD'T"
Execute TRSDOS Commands from Disk BASIC

^ew^^ "

,

v
;

98

DISK BASIC

You may execute trsdos commands directly from basic by using cmd'T'.

This is similar to cmd"S" , except that it lets you include a command or z-80

program for trsdos to execute.

As long as basic is not overwritten by the execution of the program or

command, control will return to basic; otherwise, control will return to trsdos.

(trsdos commands all overlay basic; your z-80 program may not if it loads

above basic.)

Example

CMD" I"

t

M PROGRAM"

returns you to trsdos and executes the program file program.

CMD'T" >A$

returns you to trsdos and executes the command contained in a$.

CMD'T
Calendar Date Conversion

This command converts dates back and forth between two formats: the standard

month, day, year, sequence; and a year, day of year, sequence. The content of

the source string determines which way the conversion goes.

99

TRS-80 MODEL III DISK SYSTEM

Example

CMD"J" t "11/30/80" » D$

Returns the day of the year in d$.

CMD"J" *
"-79/300" f D$

Returns the month, day, year, equivalent in d$ (the date for the 300th day

of 1979).

Sample Program

10 CLEAR 50

20 LINE INPUT'ENTER FIRST DATE (HM/DD/YY) "5 FD$

30 LINE INPUT'ENTER SECOND DATE (MM/DD/YY) " ?SD$

40 CMD"J" t FD$, Dl$

50 CMD"J" * SD$> D2$

60 Yl = VAL<RIGHT$(FD*»2>)

70 Y2 = UAL(RIGHT$(SD$,2))

80 Jl = VAL(RIGHT$(D1**3))

90 J2 = 0AL<RIGHT$<D2$*3>)

100 SI = Yl*365 + Jl

110 S2 = Y2*365 + J2

120 PRINT "THE INTERVAL BETWEEN DATES IS"

5

130 PRINT ABS(S1-S2); "DAYS "
!

140 PRINT "(IGNORING LEAP-YEARS)

"

150 INPUT "<ENTER> TO CONTINUE"! A$

1S0 GOTO 20

CMD"L"
Load Z-80 Routine into RAM

mB'v\fQutme

roiiiinek a string expression containifig a file specification for a z-so

routine or program created by the dump command. If routine is a

string constant, it must be enclosed in quotes.

cmd"L" loads a z-80 (machine-language) routine into ram. It would normally

be used to load a z-80 subroutine which is to be accessed directly from basic.

100

DISK BASIC

The z-80 routine should load into high-RAM and must not overlay the memory

protect area reserved when you first entered basic (i.e., the MEMORY SIZE?

prompt). If you do not overlay basic or trsdos, control will return to basic

after the program is loaded.

Example

The command:

CMD"L ,J "PROG"

will load a program file named prog into ram.

CMD"L" >P$

will load a program which has been specified as p$.

CMD"0"
Sort ("Order") an Array

'.'

jt js\tm.'1iiid9er variable containing the number ofJfeih^to be;s.ort9d.;
%

arrayfstert) specifies an array element. The array contains the data to be

sorted, and start is the subscript of the first element to be sorted. The

array must be one-dimensional, string type. The string elements in

array may be of any length.

This command sorts (orders) a one-dimensional string array, i.e., a list. You

may sort all or part of the array, depending on the values you give to x and start.

Sample Program

10 CLEAR 10 * 25 + 50 'ROOM FOR 10 WORDS + EXTRA

20 DIM A$(9) 'LIST OF TEN (0-9)

30 FOR ND = TO 9

40 PRINT "ENTER WORD #"5 WD+1

50 INPUT A$(WD)

S0 NEXT WD

70 N*=iB: CMD ,, 0" t NX > A$(0)

80 PRINT "HERE IS THE SORTED LIST"

90 FOR WD=0 TO 9

101

TRS-80 MODEL III DISK SYSTEM

100 PRINT A$(WD)

110 NEXT ND

CMD"P"
Check Printer Status

mDF\$tatus

status is a string variable

cmd"P" makes it possible for Disk basic to check the status of the printer.

Unlike the video display, the printer is not always available. It may be

disconnected, offline, out of paper, etc. In such cases, when you try to output

information to the printer, the Computer will wait until the printer becomes

available. It will appear to "hang up." To regain keyboard control (and cancel

the printer operation), press (BREAK) .

Suppose you have a program which uses printer output. If a printer is not

available, you don't want the Computer to stop and wait for it to become

available. Instead, you may want to print a message such as PRINTER

UNAVAILABLE and go on to some other operation.

To accomplish this, you need to check the printer status, cmd^p" can be used to

check the printer's status at any time. It returns the contents as an Ascn-coded

decimal number. The specific value of this number depends upon the type of

printer you are using as well as its status at any particular time. The value may
then be printed or examined by the program.

Only the four most significant bits are used in this "status byte." In binary,

these must be: "0011" or else the print operation will not be attempted. To

check for this "go" condition, and the status byte with 240 and compare the

result with 48. The meaning of each status bit depends on which printer you

use. See the printer owner's manual for bit designations.

Sample Program

10 CMD"P" #X*

20 SJ1 = UAL<><$) AND 240

30 IF STZ <> 48 THEN PRINT "PRINTER UNAVAILABLE" : STOP

40 PRINT "PRINTER AVAILABLE"

50 REM PROGRAM MAY NOW CONTINUE

102

DISK BASIC

CMD"R"
T\irn On Clock-Display

This command controls the real-time clock display in the upper-right corner of

the Video Display. When it is on, the 24-hour time will be displayed and

updated once each second, regardless of what program is executing.

Note: The real-time clock is always running (except during cassette or disk i/o),

regardless of whether the display is on or off.

Example

To turn on the clock display type: CMD"R" To turn the display off, type: CMD"T n

CMD"S"
Return to TRSDOS

CMD"S '!

To exit from Disk basic, returning control to trsdos, simply type in the

command:

CMD"S n

To return to basic and recover your program, use BASIC *. However, recovery

will not always be possible. See basic *.

Example

The basic prompt lets you know you are in Disk basic.

READY

103

TRS-80 MODEL III DISK SYSTEM

To exit, type in:

CHD I! S"

and the trsdos prompt will appear.

TRSDOS READY

CMD"T"
Turn Off Clock-Display

CWT*

This command turns off the real-time clock display function.

However, the clock continues to run.

Example

To stop the clock display update type: CMD 11 !""

To start the display, type: CMD"R"

CMD "X"
Cross-reference of Program Lines

CMO^Vte/gef

target is either a basic reserved word (such as print) or a sfriiig-literal. If It

is a reserved word, it must not be enclosed in quotes; if it is a string-

literal, it must be enclosed in quotes.

104

DISK BASIC

This command finds all occurrences of a reserved word or other string literal in

the resident program. The " finds" are listed on the display as five-digit line

numbers.

To search for any basic reserved word (including reserved arithmetic operators),

use the keyword as-is. To search for anything else (including variable-names and

text), enclose the text inside quotes.

For example, suppose you have the following program in memory:

10 PRINT "THIS IS A TEST"

20 INPUT "PRESS <EIMTER> FOR THE NEXT PRINT MESSAGE"; Z$

30 A = A + 1

40 PRINT "+ ++4- + + +"

CMD "X" t PRINT will find all occurrences of print, except for cases where

print was part of a quoted string: lines 10 and 40.

CMD "X" * "PRINT" will find all occurrences of "print" as a string literal: line

20.

CMD "X" , + will list line 30, but CMD "X% " + " will list line 40. CMD "X" *

"A" will list lines 10, 20, and 30. Notice that variables and text are both treated

as string literals.

CMD "Z"
Duplicate Output to Video and Printer

€wrv "switch"

switch is either on or off. switch must be enclosed in quotation marks,

This command enables or disables dual video/printer output. While the function

is "on," all video output is copied to the printer, and all printer output is copied

to the video. (The printer must be on-line when you turn dual output "on.")

Video and printer output may differ due to intrinsic differences in the printer and

video devices.

Examples

CMD "Z" » "ON"

Turns dual video/printer output on.

105

TRS-80 MODEL III DISK SYSTEM

Turns dual video/printer output off.

DEFFN
Define Function

formula

function does.

formula is an expression usually involving the argument(s)
|

the teM^

The def fn statement lets you create your own function. That is, you only

have to call the new function by name, and the associated operations will

automatically be performed. Once a function has been defined with the def fn

statement, you can call it simply by inserting fn in front offunction name. You

can use it exactly as you might use one of the built-in functions, like sin, abs,

and strings.

The type of variable used forfunction name determines the type of value the

function will return. For example, iffunction name is single precision, then that

function will return a single-precision value, regardless of the precision of the

arguments.

The particular variables you use as arguments in the def fn statement

(argument-1, . . .) are not assigned to the function. When you call the function

later, any variable name of the same type can be used.

Furthermore, using a variable as an argument in a def fn statement has no effect

on the value of that variable. So you can use that particular variable in another

part of your program without worrying about interference from def fn.

The function can be defined with no arguments at all, if none are required.

For example:

DEF FNR = RND (9(3) + 9

defines a function to return a random value between 10 and 99.

106

DISK BASIC

Examples

DEF FNR(AtB) = A + INT((B - (A - 1)) * RND<0>>

This statement defines function fnr which returns a random number between

integers A and B. The values for A and B are passed when the function is

"called," i.e., used in a statement like:

Y = FNR(R1 * R2)

If ri and R2 have been assigned the values 2 and 8, this line would assign a

random number between 2 and 8 to y.

DEF FNL$(K) = STRING*(Xf "-")

Defines function fnl$ which returns a string of hyphens, x characters long.

The value for x is passed when the function is called:

PRINT FNL$<3)

This line prints a string of 30 hyphens.

Here's an example showing def fn used for a complex computation— in

double-precision.

DEF FNX#(A#* B#) = <A# - B») * (A« - B«)

Defines function fnx# which returns the double-precision value of the square of

the difference between a# and b#. The values for a# and b# are passed when

the function is called:

S# = FNX*(A#> B«)

We assume that values for a# and b# were assigned elsewhere in the program.

Sample Program

71(3 DEF FNV(T> = (1S87 + SQR(273 + T))/1G # 52

720 INPUT "AIR TEMPERATURE IN DEGREES CELSIUS"; T

730 PRINT "THE SPEED OF SOUND IN AIR OF" T "DEGREES

CELSIUS IS" FNV<T) "FEET PER SECOND*"

107

TRS-80 MODEL III DISK SYSTEM

DEFUSR
Define Point of Entry for USR Routine

n equals one of the digits 0, 1 ,.,.,9; if n is omitted, is assumed.

defusr lets you define the entry points for up to 10 machine-language routines.

In non-Disk basic, the addresses were POKEd into ram. This poke method
cannot be used in Disk basic.

Examples

DEFUSR3 = &H7DBB

assigns the entry point X'7D00\ 32000 decimal, to the USR3 call. When your
program calls USR3, control will branch to your subroutine beginning at x'7D00\

DEFUSR = (BASE + IS)

assigns start address (base + 16) to the usro routine.

Note: When decimal addresses are given, they are evaluated as signed two-byte
integers. So, for addresses above 32767, use desired decimal address -65536.
See usR/i.

INSTR
Search for Specified String

position specifies the position in string 1 where the search is to begin.

position is optional; if it is not supplied, search automatically begins

at the first character in string 1. (Position 1 is the first character in

108

DISK BASIC

llllitlt^^ search for.

This function lets you search through a string to see if it contains another string.

If it does, instr returns the starting position of the substring in the target string;

otherwise, zero is returned. Note that the entire substring must be contained in

the search string, or zero is returned. Also, note that instr only finds the first

occurrence of a substring at the position you specify.

Examples

In these examples, a$ = "Lincoln":

INSTR(A$* "INC")

returns a value of 2.

INSTR <A$> "12")

returns a zero.

INSTR(A$t "LINCOLNABRAHAM")

returns a zero. For a slightly different use of instr, look at

INSTR (3* "1232123" *
"12")

which returns 5.

Sample Program

This program gets search and target text from the keyboard, then locates all

occurrences of the target text in the search text. Line 90 is just for "show."

10 CLEAR 1000

20 CLS

30 INPUT "SEARCH TEXT"? S$

413 INPUT "TARGET TEXT'S T*

45 CLS

50 C = s P = 1 'P = POSITION* C = COUNT

60 F = INSTR<PfS*fTt)

70 IF F = THEN 120

80 C = C + 1

90 PRINT @0>LEFT$(S$*F-i> + STRING* (LEN(T$)> 191)
+

- RIGHT* <S*>LEN<S*)-F-LEN(T*)+1>

100 P = F + LEN(T$)

110 IF P <= LEN(S$) - LEN(T$) + 1 THEN S0

120 PRINT "FOUND "5 C5 "OCCURRENCES"

109

lilliifc TRS-80 MODEL III DISK SYSTEM

LINE INPUT
Input a Line from Keyboard

prompt is a prompting message.

variable is the name that will be assigned to the line you type in.

line input (or LiNEiNPUT—the space is optional) is similar to input, except:

• The Computer will not display a question mark when waiting for your
operator's input.

• Each line input statement can assign a value to just one variable.

• Commas and quotes your operator can use as part of the string input.

• Leading blanks are not ignored— they become part of variable.

• The only way to terminate the string input is to press (ENTER).

line input is a convenient way to input string data without having to worry
about accidental entry of delimiters (commas, quotation marks, colons, etc.).

The CENTER) key serves as the only delimiter. If you want anyone to be able to
input information into your program without special instructions, use the line
input statement.

Some situations require that you input commas, quotes and leading blanks as
part of the data, line input serves well in such cases.

Examples

LINE INPUT A$

Input a$ without displaying any prompt.

LINE INPUT "LAST NAME , FIRST NAME? H 5N$

Displays a prompt message and inputs data. Commas will not terminate the
input string, as they would in an input statement.

Sample Program

200 REM CUSTOMER SURVEY
205 CLEAR 1000

207 PRINT

110

DISK BASIC

210 LINE INPUT "TYPE IN YOUR NAME "5 A$

220 LINE INPUT "DO YOU LIKE YOUR COMPUTER? "5 B$

230 LINE INPUT "WHY? "
5 C$

235 PRINT

240 PRINT A$: PRINT

250 IF B$= "NO" THEN 270

2S0 PRINT "I LIKE MY COMPUTER BECAUSE "5 C$:END

270 PRINT "I DO NOT LIKE MY COMPUTER BECAUSE "5 C$

Notice that when line 210 is executed, a question mark is not displayed after the

statement, "Type in your name." Also, notice on line 230 you can answer the

question "Why" with a statement full of delimiters, commas and quotes.

MID$ =
Replace Portion of String

wd$ (oldstring, position, length) = replacement-string

o/tf5fr/7?ff is the variabie-name of the string you want to change.

pessiei

character to be changed.

length is a numeric expression specifying the number of characters to be

replaced.

replacement-string is a string expression to replace the specified portion

of oldstring.

Note: if replacement-string is shorter than length, then the entire replacement-

string

This statement lets you replace any part of a string with a specified new string,

giving you a powerful string editing capability.

Note that the length of the resultant string is always the same as the original

string.

Examples

a$ = "Lincoln" in the examples below:

MID$(A$, 3* 4) = "12345": PRINT A$

which returns LH234N.

111

TRS-80 MODEL III DISK SYSTEM

MID$(A$* 1 * 2) = "": PRINT A*

which returns Lincoln.

MID$(A$> 5) = "123*15"; PRINT A$

returns LINC123.

MID$(A$* 5) = "01": PRINT A$

returns lincoin.

MID$(A$* 1*3)= "***": PRINT A$

returns ***coln.

Sample Program

770 CLS: PRINT: PRINT

780 LINE INPUT "TYPE IN A MONTH AND DAY HM/DD* "3 B$

790 P = INSTR(S$* "/")

800 IF P = THEN 7B0

810 MID*(S$t Pt 1) = CHR*U5)
8Z0 PRINT S$ " IS EASIER TO READ* ISN'T IT?"

This program uses instr to search for the slash ("/"). When it finds it

(if it finds it), it uses MiD$ = to substitute a " - " (Chr$(45)) for it.

NAME
Renumber the Current Program

newWrn? specifies the new line number of the first line to be renumbered,

stertttnespecifies the line number in the original program where

renumbering will start. If omitted, the entire program will be

increment specifies the increment to be used between each successive line

number, if omitted, 10 is used.

112

DISK BASIC

Examples

NAME

Renumbers the entire program: 10, 20, 30, . . .

NAME 8000*5000*100

Renumbers all lines numbered from 5000 up; the first renumbered line will

become 6000, and the following lines will be incremented by 100. All line

references within your program will be renumbered also.

USRn
Call to User's External Subroutine

usR/f (nmexp)

wtt#m irsjieeille^ qiie of ten available usr calls, /?=B,1,2,^,9. If /» is

p^jttetf, zero is assumed.

fim&M an integerlrom -32768 to 32767 and Is passed as an integer

argument to the routine.

These functions (usro through USR9) transfer control to machine-language

routines previously defined with DEFUSRn statements.

When a urs call is encountered in a statement, control goes to the address

specified in the defusraz statement. This address specifies the entry point to your

machine-language routine.

Note: If you call a usrh routine before defining the routine entry point with

DEFUSRrc, an illegal function call error will occur.

You can pass one argument and retrieve one output value directly via the usr

argument; or you can pass and retrieve arguments indirectly via poke and peek

statements.

Example

1.0 DEFUSR1=&H7D00
20 REM, MORE PROGRAM LINES HERE

100 A=USR1<X)

The effect of this sequence is to:

113

TRS-80 MODEL III DISK SYSTEM

1

.

Define usr as a routine with an entry point at hex 7D00 (line 10).

2. Transfer control to the routine; the value x can be passed to the routine if the

routine makes the call described below (line 100).

3. When the routine returns to basic, the variable a may contain the value

passed back from the routine (if your routine makes the jump described

below); otherwise a will be assigned the value of x (line 100).

Passing arguments to and from USR routines

There are several ways to pass arguments back and forth between your basic

main program and your usr routines: the two major ways are listed below.

1. poke the argument(s) into fixed ram locations. The machine-language routine

can then access these values and place results in other ram locations. When
the routine returns control to basic, your program can peek into these

addresses to pick up the "output" values. This is the only way to pass two
or more arguments back and forth.

2. Pass one argument to the routine as the argument in the usRn call, then use

special rom calls to access this argument and return a value to basic. This

method is limited to sending one argument and returning one value (both

are integers).

rom Calls

call 0A7FH Puts the usr argument into the hl register pair; h contains msb, l

contains lsb. This call should be the first instruction in your usr
routine.

jp oa9ah Use this jump to return to basic; the integer in hl becomes the

output of the usr call. If you don't care about returning hl, then

execute a simple RETurn instruction instead of this jump.

Listed below is an assembled program to white out the display (an "inverse"

clear key!). Don't type it in. Type in the basic program that follows it.

7D00

3C00

00BF

03FF

00100

00110

00120

00130

00140

00150

00160

00170

00180

00130

00200

00210

00220

ZAP OUT SCREEN USR FUNCTION

ORG

EQUATES

MI DEO

WHITE

COUNT

EQU

EQU

EQU

7D00H

3C00H

0BFH

3FFH

5 start of mi deo ram

;all white graphics byte

i NUMBER OF BYTES TO HOME

PROGRAM CHAIN MOVES X'BF' INTO ALL OF VIDEO RAM

114

DISK BASIC

7D00 21003C

7D03 3GBF

7D05 11013C

7D08 01FF03

7D0B EDB0

7D0D C3

7D00

0(3230 ZAP

00240

00250

002G0

00270

00280 5

00290

00300

LD

LD

LD

LD

LDIR

RET

END

HLtVIDEO

(HL) , WHITE

DEtVIDEO+1

BC»C0UNT

?AP

5SOURCE ADDRESS

iPUT OUT 1ST BYTE

^DESTINATION ADDRESS

5NUMBER OF ITERATIONS

5DO IT TO IT! !

!

iRETURN TO BASIC

This routine can be pokec! into ram and accessed as a usr routine. First start basic and answer the

MEMORY SIZE question with 31999. Then run the program.

100 ' PROGRAM: USR1

110 ' EXAMPLE OF A USER MACHINE LANGUAGE FUNCTION

115 ' DEPRESS THE '(§' KEY WHILE NUMBERS ARE PRINTING TO STOP

120 '

130 / ******* POKE MACHINE PROGRAM INTO MEMORY *******

140 '

150 DEFUSR1 = &H7D00

1S0 FOR X = 32000 TO 32013 '7D00 HEX EQUAL 32000 DECIMAL

170 READ A

180 POKE X* A

190 NEXT X

192 '

194 ' ******* CLEAR SCREEN & PRINT NUMBERS 1 THRU 100 *******

195 '

200 CLS

205 PRINT TAB* 15)5 "WHITE-OUT USER ROUTINE": PRINT

210 FOR X = I TO 100

220 PRINT X5

225 A$ = IIMKEY*: IF A$ = "@" THEN END

230 NEXT X

240 '

250 ' ******* JUMP TO WHITE-OUT SUBROUTINE *******

2S0 '

270 X = USR1 (0)

280 FOR X - 1 TO 1000: NEXT X 'DELAY LOOP

290 GOTO 200

300 '

310 ' ******* DATA IS DECIMAL CODE FOR HEX PROGRAM *******

320 '

330 DATA 33>0>6B*54»19i # 17 1 1 *G0>1 *255 t3 *237 » 17G ,201

Run the program. An equivalent basic white out routine takes a long time by comparison!

115

TRS-80 MODEL III DISK SYSTEM

Disk-Related Features

Disk basic provides a powerful set of commands, statements and functions

relating to disk i/o under trsdos. These fall into two categories:

1

.

File manipulation: dealing with files as units, rather than with the distinct

records the files contain.

2. File access: preparing data files for i/o; reading and writing to the files.

Under the heading, File Manipulation, we will discuss the following

commands.

kill Delete a program or data file from the disk

load Load a basic program from disk

merge Merge an ASCII-format basic program on disk with one

currently in ram

run "program" Load and execute a basic program stored on disk

save Save the resident basic program on disk

Under the heading, File Access, we will discuss the following statements and

functions.

Statements

OPEN

CLOSE

INPUT #
LINE INPUT#

PRINT#

HELD

GET

PUT

LSET

RSET

Functions

CVD

CVI

CVS

EOF

LOC

Open a file for access (create the file if necessary)

Close access to the file

Read from disk, sequential mode

Read a line of data, sequential mode

Write to disk, sequential mode

Assign field sizes and names to random-access file buffer

Read from disk, random access mode

Write to disk, random access mode

Place value in specified buffer field, add blanks on the

right to fill field

Place value in specified buffer field, add blanks on the left

to fill field

Restore double-precision number to numeric form after

GETting from disk

Restore integer to numeric form after GETting from disk

Restore single-precision number to numeric form after

GETting from disk

Check to see if end of file encountered during read

get current record number.

116

DISK BASIC

LOF

MKD$

MKI$

MKS$

Return number of last record in file

Convert double-precision number to string so it can be put

on disk

Convert integer to string so it can be put on disk

Convert single-precision number to string so it can be put

on disk

117

TRS-80 MODEL III DISK SYSTEM

File Manipulation

KILL
Delete a File from the Disk

/j$$'4eM a file specification for an existing file,

This command works like the trsdos kill command— see trsdos Library

Commands.

Example

KILL H OLDFILE/BAS*PSWi H

deletes the file specified from the first drive which contains it.

Do not kill an open file, or you may destroy the contents of the diskette. (First,

close the open file.)

LOAD
Load BASIC Program File from Disk

where jp defines a filespec for a basic program file stored on disk.

r tells basic to nm the program after it is loaded.

This command loads a basic program file into ram; if the r option is used,

basic will proceed to run the program automatically; otherwise, basic will

return to the command mode.

118

DISK BASIC

load without the R option clears all variables and closes all open files, load
with the R option clears all variables but does not close the open files.

load with the r option is equivalent to the command run exp$,R. Either of

these commands can be used inside programs to allow program chaining— one

program calling another, etc.

Example

L0AD M PR0G1/BAS:2 M

Clears resident basic program and loads progi/bas from Drive 2; returns to

basic command mode.

MERGE
Merge Disk Program with Resident Program

MERGE i

&$$ if1W ^gelfication for an Ascii-format basic disk file, eg., a program

merge is similar to load— except that the resident program is not erased before

the new program exp$ is loaded. Instead, the new program is merged into the

resident program.

That is, program lines in exp$ will simply be inserted into the resident program

in sequential order. If line numbers in exp$ coincide with line numbers in the

resident program, the resident lines will be replaced by those from exp$.

119

TRS-80 MODEL III DISK SYSTEM

Program on Disk Program in Ram

10

+

10

20

30

40

50

60

70

90 90

100

110

120

Merged Program in Ram

10

20

30

40

50

60

70

90

100

110

120

Sample Use

Save this program in ascii format.

1000 REM , SUBROUTINE TO SAY HELLO
1010 PRINT "HELLO! "

1020 RETURN

Type NEW (ENTER) , then type in this program.

100 CLS

110 PRINT "LET'S CALL THE SUBROUTINE ,

120 PRINT "DIALING NOW .
,

"

130 FOR 1=1 TO 1000 : NEXT
140 GOSUB 1000

150 PRINT "BACK FROM SUBROUTINE."
1S0 END

Now type MERGE "file" using the file name given to the first file. List the program. Then run it.

RUN"program"
Load and Execute a Program from Disk

mHfii^M

/^^ is llie name of a basic prograiii file. It is a string expression. (Iff a string

constant is used, it must be enclosed in quotes.) The ,r option causes

120

DISK BASIC

This command loads and executes a basic program stored on disk. It may be

used inside a program to allow chaining (one program calling another).

Examples

RUN "PROG"

Loads and executes prog (all open files are closed first).

A$="NEWPR0G n

RUN A*t R

Loads and executes newprog (all open files remain open).

SAVE
Save Program onto Disk

This command lets you save your basic programs on disk. You can save the

program in compressed or ascii format.

Using compressed format takes up less disk space and is faster during both

saves and loads. Using the ascii option makes it possible to do certain things

that cannot be done with compressed format basic files.

For example:

• The merge command requires that the disk file be in ascii form.

• Programs which read in other programs as data will typically require that the

data programs be stored in ascii.

• The trsdos command append also requires that disk files be in ascii form.

121

TRS-80 MODEL III DISK SYSTEM

Examples

SAVE"FILEi/BAS* J0HN0D0E:3"

saves the resident basic program in compressed format with the file name filei,

extension /bas, password .johnqdoe; the file is placed on Drive :3.

SAUE"MATHPAK/TXT n
*A

saves the resident program in ascii form, using the name mathpak/txt, on the

first nonwrite-protected diskette.

Upon completion of a save, basic returns in the command mode.

122

DISK BASIC

File Access

This section is divided into four parts:

1. Creating files and assigning buffers— open and close

2. Statements and functions

3. Sequential i/o techniques

4. Random i/o techniques

If this is your first experience with disk file access, you should concentrate on

parts 1 , 3 and 4, perhaps just skimming through part 2 to get a general idea of

how the functions and statements work. Later you can go back to part 2 and

learn the details of statement and function syntax.

Creating Files and Assigning Buffers

During the initialization dialog, you type in a number in response to how many

files? The number you type in tells basic how many buffers to create to handle

your disk accesses (reads and writes).

Each buffer is given a number from 1 to 15. If you type:

HON MANY FILES? 3V (ENTER)

basic sets aside 3 buffers, numbered 1,2,3.

You can think of a buffer as a waiting area that data must pass through on the

way to and from the disk file. When you want to access a particular file, you

must tell basic which buffer to use in accessing that file. You must also tell

basic what kind of access you want— sequential output, sequential input, or

random input/output.

All this is done with the open statement, and "undone" with the close

statement.

OPEN
Open a File

it will be created.

123

TRS-80 MODEL III DISK SYSTEM

o Sequential output starting at the first record. If the file is not

found, It will be created.

e (Extend) Sequential output starting at end of file. If the file is not

found. It will be created.

r Random input/output, if the file is not found, it will be cmatedf

If mode is a constant, it must be enclosed in quotes.

buffer is a numeric expression specifying which buffer is to be used;

fffeis a string expression containing the file specification. If a constant is

used, it must be enclosed in quotes.

record-length is a numeric expression from to 256 specifying the logical

record length. is the same as 256. This option may only be used if

¥ariable-length records were requested during initialization (How
Many Files?). If record-length is omitted, 256 is used, record-length

is used with Random access only.

This statement lets you create a file, write data into it, update it, and read it. For
details on file access, see Methods of Access later in this section.

Iffile includes a drive specification, basic will use only the specified drive. If

no drive is specified, basic will search for a matching file, starting with the

master drive (usually Drive 0).

Examples

OPEN "0"
* 1 t "DATAFILE"

Opens datafile (creates it if it doesn't already exist) for sequential output.

Output will be done through buffer #1. Records will be 256 bytes long. Since
the "o" mode is specified, output will start at the first record in the file.

If "e" is used instead of "o", output will start at the end of the file.

OPEN "R", 2* H PAYROLL/A :1" , G4

Opens/creates payroll/a for random input/output. Access will be through

buffer #2. Records will be 64 bytes long (if basic was initialized for variable-

length records).

BUFFER = 3: FILE$ = "DATA": RECLN = 128

OPEN "R", BUFFER* FILE** RECLN

Opens/creates data for random input/output. Access will be through buffer #3.
Records will be 128 bytes long (if basic was initialized for variable-length

records).

124

DISK BASIC

CLOSE
Close Access to the File

nmexp has a value from 1 to 15, and refers to the fHe's buffer number

lle^

This command terminates access to a file through the specified buffer(s).

If nmexp has not been assigned in a previous open statement, then

close nmexp

has no effect.

Examples

CLOSE 1 #2 t8

Terminates the file assignments to buffers 1 , 2 and 8. These buffers can now be

assigned to other files with open statements.

CLOSE FIRSTX+COUNTX

Terminates the file assignment to the buffer specified by the sum

(first% + COUNT%).

Do not remove a diskette which contains a file openedfor writing (mode = O,

E, or R). First close the file. This is because the last 256 bytes of data may not

have been written to disk yet. Closing the file will write the data, if it hasn't

already been written.

Any modification to the resident program (new, editing, load, merge, etc.)

will cause open files to be closed.

125

TRS-80 MODEL III DISK SYSTEM

INPUT#
Sequential Read from Disk

where nmexp specifies a sequential input file buffer, /?mexp=1,2,..,15.

var is the variable name to contain the data from the file.

This statement inputs data from a disk file. The data is input sequentially. That
is, when the file is first opened, a pointer is set to the beginning of the file.

Each time data is input, the pointer advances. To start over reading from the
beginning of the file, you must close the file and re-open it.

input# doesn't care how the data was placed on the disk— whether a single
print# statement put it there, or whether it required 10 different print#
statements. What matters to input# are the positions of the terminating
characters and the eof marker.

To input# data successfully from disk, you need to know ahead of time what
the format of the data is. Here is a description of how input# interprets the
various characters it encounters when reading data.

When inputting data into a variable, basic ignores leading blanks; when the
first non-blank character is encountered, basic assumes it has encountered the
beginning of the data item.

The data item ends when a terminating character is encountered or when a
terminating condition occurs. The particular terminating characters vary,

depending on whether basic is inputting to a numeric or string variable.

Special Note

Here's an important exception to keep in mind in reading the following material.

When (ENTER) (a carriage return) is preceded by© (a line feed), the CENTER) is

not taken as a terminator. Instead, it becomes a part of the data item (string

variable) or is simply ignored (numeric variable).

(To enter the £) character from the keyboard, press the down-arrow character.
To enter the (ENTER) character, press (INTER) .)

This exception applies to all cases noted below where (ENTER) is said to be a
terminator.

126

DISK BASIC

'^s«*^^

Numeric Input

Suppose the data image on disk is

1*234 -33 27 [ENTER)

(ENTER) denotes a carriage-return character (ascii code decimal 13).

Then the statement

INPUT#1 * A>B,C

or the sequence of statements

INPUT#1*A: INPUT#ltB: INPUT#1 »C

will assign the values as follows:

A- 1.234

B- -33

C = 27

This works because blanks and (ENTER) serve as terminators for input to numeric

variables. The blank before 1.234 is a ' 'leading blank," therefore it is ignored.

The blank after 1.234 is a terminator; therefore basic starts inputting the second

variable at the - character, inputs the number -33, and takes the next two

blanks as terminators. The third input begins at the 2 and ends with the 7.

String Input

When reading data into a string variable, input ignores all leading blanks;

the first non-blank character is taken as the beginning of the data item.

If this first character is a double-quote ("), then input will evaluate the data as

a quoted string: it will read in all subsequent characters up to the next double-

quote. Commas, blanks, and (ENTER) characters will be included in the string.

The quotes themselves do not become a part of the string.

If the first character of the string item is not a double-quote, then input will

evaluate the data as an unquoted string: it will read in all subsequent characters

up to the first comma, or (ENTER) . If double-quotes are encountered, they will be

included in the string.

For example, if the data on disk is:

PECOS, TEXAS' 'GOOD MELONS"

Then the statement

INPUTal t A$>B$»C$

127

TRS-80 MODEL III DISK SYSTEM

would assign values as follows:

A$ = PECOS
B$= TEXAS "GOOD MELONS"
C$ = null string

If a comma is inserted in the data image before the first double quote, c$ will

get the value, good melons.

These are very simple examples just to give you an idea of how input works.
However, there are many other ways to input data— different terminators,
different target variable types, etc.

Rather than taking a shotgun approach and trying to cover them all, we'll give a
generalized description of how input works and what the terminating characters
and conditions are, and then provide several examples.

When basic encounters a terminating character, it scans ahead to see how many
more terminating characters it can include with the first terminator. This ensures
that basic will begin looking for the next data item at the correct place.

The list below defines the various terminating sets input# will look for. It will

always try to take-in the largest set possible.

Numeric-input terminator sets

end of file encountered

255th data character encountered

,
(comma)
(ENTER)

CENTER) ©
[...][(ENTER)

]

[. . .HCHUH)©]
Quoted-string terminator sets

end of file encountered

255th data character encountered
" (double quote)

"[...][,]
"

t • ..][(ENTER)]

"[...HGHUH)©]

Unquoted-string terminator sets

end of file encountered

255th data character encountered

'canst©]

Figure 13 describes how input# assigns data to a variable.

128

**fe^j-;'

EXAMINE NEXT

CHARACTER

T

\/

NO
PUT IT INTO

TEMPORARY

SAVE AREA

-s.
EXAMINE NEXT

CHARACTER

y/lS I

^ S

PICKUP THE

TERMINATOR
SET

GET DATA FROM
TEMPORARY
SAVE AREA

EVALUATE IT
ASStGN TO
VARIABLE

Figure 13. Input process.

The following table shows how various data images will be read-in by the

statement:

INPUT*! tAtBtC

Ex.# Image on disk

123,45 (ENTERS 8,2E4 70B8 [ENTER)

3©(HT|H) 4 fENTER)5 (ENTER) AlZeof

1 ,,2,3*4 CENTER)

i ,3 t eof

Values

assigned

A- 123.45

B = 82000

C = 7000

A = 34

B = 5

C =

A=1
B =

C = 2

A=1
B = 3

C = eof error

(eof = end of file):

In Example 2 above, why does variable c get the value 0? When the input

reaches the end of file, it terminates that last data item, which then contains

4t
Ai2." This is evaluated by a routine just like the basic val function— which

returns a zero since the first character of "a 12" is a non-numeric.

129

\i

TRS-80 MODEL III DISK SYSTEM

In Example 3, when input# goes looking for the second data item, it

immediately encounters a terminator (the comma); therefore, variable B is given
the value zero.

The following table shows how various data images on disk will be read by the

statement:

IIMPUT#i ,A$>B$

Ex.# Image on disk Values assigned

1 "ROBERTS »J. "ROBERTS, M.N eof A$:ROBERTS,J.
B$:ROBERTS,M.N.

2 ROBERTS, J., ROBERTS, M.N. (ENTER) A$:ROBERTS
B$:J.

3 THE WORD "QUO" ,12345.789 (ENTER) A$:THE WORD "QUO"
B$:1 2345.789

4 BYTElsJ (ENTER) UNIT OF MEMORY eof A$:BY I h(*J(ENTER)

UNIT OF MEMORY
B$:null (eof error)

In Example 3, the first data item is an unquoted string, therefore, the double-
quotes are not terminators, and become part of a$.

In Example 4, the (ENTER) is preceded by an ©, therefore it does not terminate
the first string; both© and (ENTER] are included in a$.

LINE INPUT#
Read a Line of Text from Disk

linemm#timxft,vart

where nmexp specifies a sequential output file buffer, /miarp=1,2,...,15,

^ the string data.

Similar to line input from keyboard, this statement reads a "line" of string

data into var$. This is useful when you want to read an Ascn-format basic
program file as data, or when you want to read in data without following the

usual restrictions regarding leading characters and terminators.

130

DISK BASIC

line input (or lineinput— the space is optional) reads everything from the first

character up to:

1

.

an (ENTER) character which is not preceded by©
2. the end of file

3. the 255th data character (this 255 character is included in the string)

Other characters encountered— quotes, commas, leading blanks, © (ENTER)

pairs— are included in the string.

For example, if the data looks like:

10 CLEAR 500 (ENTER)

20 OPEN"!" fl »"PR0G" (ENTER)

then the statement

LIIMEINPUT#1 »A$

could be used repetitively to read each program line, one line at a time.

PRINT#
Sequential Write to Disk File

;'/ii^:^^;ii|li^oKlb be evaluated and written to disk.

This statement writes data sequentially to the specified file. When you first open

a file for sequential output, a pointer is set to the beginning of the file, therefore

your first print# places data at the beginning of the file. At the end of each

print# operation, the pointer advances, so the values are written in sequence.

131

TRS-80 MODEL III DISK SYSTEM

A print# statement creates a disk image similar to what a print to display

creates on the screen. Remember this, and you'll be able to set up your print#
list correctly for access by one or more input statements.

print# does not compress the data before writing it to disk; it writes an ascii-

coded image of the data.

For example, if a — 123.45

PRINT*1 >A

will write a nine-byte character sequence onto disk:

123,a5 CENTER!

The punctuation in the print list is very important. Unquoted commas and semi-

colons have the same effect as they do in regular print to display statements.

For example, if a = 2300 and b = 1.303, then

PRINT#1 >A>B

places the data on disk as

2300 1,303 [ENTER)

The comma between a and b in the print# list causes 10 extra spaces in the

disk file. Generally you wouldn't want to use up disk space this way, so you
should use semi-colons instead of commas.

PRINT#1 *A5B

writes the data as:

2300 1,303 CENTER]

print# with numeric data is quite straightforward—just remember to separate

the items with semi-colons.

print# with string data requires more care, primarily because you have to insert

delimiters so the data can be read back correctly. In particular, you must
separate string items with explicit delimiters if you want to input# them as

distinct strings.

For example, suppose:

A$="J0HN Q. DOE" and B*= " 100-01 -001

"

Then:

PRINT*! * A$?B$

would produce this image on disk:

JOHN Q* DOE100-0I-001 [ENTER]

which could not be input back into two variables.

The statement:

132

DISK BASIC

PRINT*! t a$; h *" ;b$

would produce:

JOHN Q. DOE* 100-01-001

which could be input# back into two variables.

This method is adequate if the string data contains no delimiters— commas or

(ENTER)— characters. But if the data does contain delimiters or leading blanks

that you don't want to ignore, then you must supply explicit quotes to be written

along with the data. For example, suppose A* =
H DOE* JOHN Q t

!I andB$ = "100

-01-001"

If you use

PRINT*! *A*i" >" ?B$

the disk image will be:

DOE* JOHN 0* *100-01-00i (ENTER)

When you try to input this with a statement like

INPUT#2*A$*B$

a$ will get the value doe, and b$ will get john q.— because of the comma after

doe in the disk image.

To write this data so that it can be input correctly, you must use the chr$

function to insert explicit double quotes into the disk image. Since 34 is the

decimal ascii code for double quotes, use chr$(34) as follows:

PRINT#1 *CHR$(34> 5A$SCHR*<34) iB$

this produces the disk image

"DOE* JOHN Q, "100-01-001 CENTER]

which can be read with a simple

INPUT*2*AB

Note: You can also use the chr$ function to insert other delimiters and control

codes into the file, for example:

chr$(10) © Line Feed

chr$(13) carriage return ((ENTER)character)

chr$(H) or chr$(I2) line-printer top-of-form

USING Option

This option makes it easy to write files in a carefully controlled format.

For example, suppose:

A$= n LUDWIG if

133

TRS-80 MODEL III DISK SYSTEM

B$="VAN"
C*= "BEETHOVEN"

Then the statement

PRINT»1 tUSING"! , !, I Z" iA*!B*;C*

would write the data in nickname form:

L.V.BEET (ENTER)-

(In this case, we didn't want to add any explicit delimiters.) See the print using
description in the level ii basic Reference Manual for a complete explanation of
the field-specifiers.

Random Access Statements

FIELD
Organize a Random File-Buffer into Fields

mionmexp,nmexpnsvar1$l,nmexp2nsvar2$...\

nmexp specifies a random access file buffer, nmexp= 1 ,2,. ..,15.

nmexpl specifies the length of the first field

.

vart$ defines a variable name for the first field.

nmexp2 specifies the length of the second field.

uar2$ defines a variable name for the second field.

... Subsequent nmexp as var$ pairs define other fields in the buffer.

Note: The sum of all the field-lengths must not exceed the record length, and
should equal the record length.

Before FiELDing a buffer, you must use an open statement to assign that buffer
to a particular disk file (you must use random access mode). Then use the field
statement to organize a random file buffer so that you can pass data from basic
to disk storage and vice-versa.

Each random file buffer has up to 256 bytes which can store data for transfer
from disk storage to basic or from basic to disk. (When variable-length files are
used, maximum may be from 1 to 256.) However, you need a way to access this

134

DISK BASIC

buffer from basic so that you can either read the data it contains or place new
data in it. The field statement provides the means of access.

You may use the held statement any number of times to "re-organize" a file

buffer. FiELDing a buffer does not clear the contents of the buffer; only the

means of accessing the buffer (the field names) are changed. Furthermore, two

or more field names can reference the same area of the buffer.

Examples

FIELD 1 f 128 AS A$, 128 AS B$

This statement tells basic to assign the first 128 bytes of the buffer to the string

variable a$ and the remaining 128 bytes to b$. If you now print a$ and b$, you

will see the contents of the buffer. Of course, this value would be meaningless

unless you have used get to read a 256-byte record from disk.

Note: All data— both strings and numbers— must be placed into the buffer in

string form. There are three pairs of functions (mki$/cvi,mks$/cvs,mkd$/cvd)

for converting numbers to strings and vice-versa. See "Functions" below.

FIELD 3» IS AS NM$ > 25 AS AD$, 10 AS CY* » 2 AS ST$ H AS ZP$

The first 16 bytes of buffer 3 are assigned the buffer name nm$; the next 25,

ad$; the next 10, cy$; the next 2, st$ and the next 7, zp$. The remaining 196

bytes of the buffer are not fielded at all.

More on field names

Field names, like nm$,ad$,cy$,st$, and zp$, are not string variables in the

ordinary sense. They do not consume the string space available to basic.

Instead, they point to the buffer field which you assigned with the field

statement. That's why you can use:

100 FIELD 1 ,255 AS A$

without worrying about whether 255 bytes of string space are available for a$.

If you use a buffer field name on the left side of an ordinary assignment

statement, that name will no longer point to the buffer field; therefore, you

won't be able to access that field using the previous field name.

For example,

A$ = B$

nullifies the effect of the field statement above (line 100).

During random input, the get statement places data into the 255-byte buffer,

where it can be accessed using the field names assigned to that buffer. During

random output, lset and rset place data into the buffer, so you can then put

the buffer contents into a disk file.

135

H TRS-80 MODEL III DISK SYSTEM

Often you'll want to use a dummy variable in a field statement to "pass

over" a portion of the buffer and start fielding it somewhere in the middle.

For example:

FIELD It 1G AS CLIENT$(l)t 112 AS HIST*<1>

FIELD it 128 AS DUMMY** 1G AS CLIENT$(2), 112 AS HIST$(2)

In the second field statement, dummys serves to move the starting position of

client$(2) to position 129. In this manner, two identical "subrecords" are

defined on buffer number 1 . We won't actually use dummy$ to place data into

the buffer or retrieve it from the buffer.

The buffer now looks like this:

16 112 16 112

CL$

d)

HIST$

(D

CL$

(2)

HIST$

(2)

DUMMY$

GET
Read a Record from Disk- Random Access

get mexpti;!imxp2i

' into^ 15.

nmexp2 specifies which record to get in the lite; if omitted, the current

record will be read.

This statement gets a data record from a disk file and places it in the specified

buffer. Before GETting data from a file, you must open the file and assign a

buffer to it. That is, a statement like:

open uR" ,nmexpl filespec

is required before the statement:

get nmexpl
y
nmexp2

get tells basic to read record nmexp2 from the file and place it into the nmexpl
buffer. If you omit the record number in get, basic will read the current record.

136

DISK BASIC

The "current record" is the record whose number is one higher than that of the

last record accessed. The first time you access a file via a particular buffer, the

current record is set equal to 1

.

For example:

Program statement Effect

1000OPEN"R ,

\l,
t 'NAME/BAS'

1010 FIELD 1,...

1020 GET 1

1025 REM. ..ACCESS BUFFER

1030 GET 1,30

1035 REM...ACCESS BUFFER

1040 GET 1,25

1046 REM...ACCESS BUFFER

1050 GET 1

Open name/bas for random access

using buffer 1

Structure buffer

get record 1 into buffer 1

get record 30 into buffer 1

get record 25 into buffer 1

get record 26 into buffer 1

If you are using variable-length records (not fixed-length), an attempt to get

past the end of file will produce an error.

If you are using fixed-length records, the same attempt will return a null record

and no error will occur. To prevent this from occurring, you can use the lof

function to determine the number of the highest numbered record.

PUT
Write a Record to Disk—Random Access

pmmmp1hnmxfi2l

rt/ite^$peeiiles a random access file buffer, nmexp- 1 ^.;>ilv

nmmp2^e$i&$ the record number in the ii\B, nmexp2\$$BmMyf)\}
want to write. If nmexp2 is omitted, the current record number is

assumed.

This statement moves data from a file's buffer into a specified place in the file.

Before PUTting data in a file, you must:

1 . open the file, thereby assigning a buffer and defining the access mode (must

be r);

137

TRS-80 MODEL III DISK SYSTEM

2. field the buffer, so you can

3. place data into the buffer with lset and rset statements.

When basic encounters the statement:

PUT nmexp,nmexp2

it does the following:

• Gets the information needed to access the disk file

• Checks the access mode for this buffer (must be r)

• Acquires more disk space for the file if necessary to accommodate the record

indicated by nmexp2

• Copies the buffer contents into the specified record of the disk file

• Updates the current record number to equal nmexp2 + 1

The "current record" is the record whose number is one higher than the last

record accessed. The first time you access a file via a particular buffer, the

current record is set equal to 1

.

If the record number you put is higher than the end-of-file record number, then

nmexpl becomes the new end-of-file record number.

LSET and RSET
Place Data in a Random Buffer Field

These two statements let you place character-string data into fields previously

set up by a field statement.

For example, suppose nm$ and ad$ have been defined as field names for a

random file buffer. nm$ has a length of 18 characters, and ad$ has a length of

25 characters,

Now we want to place the following information into the buffer fields so it can

be written to disk:

138

DISK BASIC

name: JIM CRICKET* JR.

address: 2000 EAST PECAN ST,

This is accomplished with the two statements:

LSET NM$="JIM CRICKET »JR, "

LSET AD$="2000 EAST PECAN ST. "

This puts the data in the buffer as follows:

JIM CRICKET. JR. Z000 EAST PECAN ST.

NM$ AD$

Note that filler spaces were placed to the right of the data strings in both cases.

If we had used rset instead of lset statements, the filler spaces would have

been placed on the left. This is the only difference between lset and rset.

For example:

RSET NM*="JIM CRICKET. JR. "

RSET AD$="2000 EAST PECAN ST. "

places data in the fields as follows:

JIM CRICKET. JR. 2000 EAST PECAN ST,

NM$ AD$

If a string item is too large to fit in the specified buffer field, it is always

truncated on the right. That is, the extra characters on the right are ignored.

CVD, CVI and CVS
Restore String to Numeric Form

vrnfexi
iiititi

exp$ defines an eight-character string; exp$ is typically the name of a

buffer field containing a numeric string. If im(exp$)<S, an illegal

function call error occurs; if im(exp$)>&, only the first eight

„ a two-character string; exp$ is typically the name of a buffer

139

TRS-80 MODEL 111 DISK SYSTEM

ais(exp$}

a ft)iH>characfer string; exp$ is typically the name of a buffer
lieiii containing a numeric siring. If Lm(exp$)<4, aw illegal function
call error occurs; if i£u(exp$}>4, only the first four characters are

These functions let you restore data to numeric form after it is read from disk.
Typically the data has been read by a get statement, and is stored in a random-
access file buffer.

The functions cvd, cvi, and cvs are inverses of mkd$, mki$, and mks$,
respectively.

For example, suppose the name grosspays references an eight-byte field in
a random-access file buffer, and after GETting a record, grosspays contains a
mkds representation of the number 13123.38.

Then the statement:

PRINT CUD(GROSSPAY$) -TAXES

prints the result of the difference, 13 123.38 -taxes. Whereas the statement:

PRINT GROSSPAY*-TAXES

will produce a type mismatch error, since string values cannot be used in
arithmetic expressions.

Using the same example, the statement

A*=CUD(GROSSPAY$)

assigns the numeric value 13123.38 to the double-precision variable a#.

EOF
End-Of-File Detector

nmexp specifies a file buffer, nmexp=1,2„..,tt.

140

DISK BASIC

This function checks to see whether all characters up to the end-of-file marker

have been accessed, so you can avoid input past end errors during sequential

input.

Assuming nmexp specifies an open file, then EOF(nmexp) returns (false) when

the eof record has not yet been read, and - 1 (true) when it has been read.

Examples

IF E0F(5) THEN PRINTEND OF FILE"FILENM*

IF EOF(NM) THEN CLOSE NM'Z

The following sequence of lines reads numeric data from data/txt into the

array a(). When the last data character in the file is read, the eof test in line

30 "passes," so the program branches out of the disk access loop, preventing

an input past end error from occurring. Also note that the variable i contains

the number of elements input into array a().

5 DIM A<100> 'ASSUMING THIS IS A SAFE VALUE

10 OPEN "I" tl * "DATA/TXT"

20 11=0

30 IF E0F(I) THEN 70

40 INPUTtti tfi(IX)

50 n.=n.+i

S0 GOTO 30

70 REM PROGRAM CONTINUES HERE AFTER DISK INPUT

LOC
Get Current Record Number

file number is a numeric expression specifying the buffer for a currently-

opiinrt^

loc is used to determine the current record number, i.e., the number of the last

record read since the file was opened, loc is only valid after a get.

Example

PRINT LOC(l)

141

Sample Program

1310 At = "WILLIAM WILSON"
1320 GET 1 <+l

1330 IF N$ = A$ THEN PRINT "FOUND IN RECORD" LOC(l): CLOSE-
END

1340 GOTO 1320

This is a portion of a program. Elsewhere the file has been opened and fielded
n$ is a field variable. If n$ matches a$ the record number in which it was found
is printed.

LOF
Get End-Of-File Record Number

lor(nmexp)

nmexpsp '^mmim :mwmexfi= 1,2,.. ..is.

This function tells you the number of the last, i.e., highest numbered, record
in a file. It is useful for both sequential and random access.

For example, during random access to a pre-existing file, you often need a
way to know when you've read the last valid record, lof provides a way.

lof is valid as soon as a previously created file is opened. If a file is extended
lof is not valid until a get is executed.

Examples:

10 OPEN "R" ,1 ."UNKNOWN/TXT"
20 FIELD 1 ,255 AS A$
30 F0RI%=1 TO L0F(1)
40 GET 1 ,11

50 PRINT A$
60 NEXT

In line 30, lof(d specifies the highest record number to be accessed.

Note: If you attempt to get record numbers beyond the end-of-file record basic
simply fills the buffer with hexadecimal zeros, and no error is generated.

'

142

When you want to add to the end of a file, lof tells you where to start adding:

100 IX=L0F(1)+1 'HIGHEST EXISTING RECORD

110 PUT 1 ill 'ADD NEXT RECORD

MKD$, MKI$, and MKS$
Convert Data, Numeric-to-String

These functions change a number to a "string." Actually the byte values which

make up the number are not changed; only one byte, the internal data-type

specifier, is changed, so that numeric data can be placed in a string variable.

That is:

mkd$ returns an eight-byte string.

mki$ returns a two-byte string.

mks$ returns a four-byte string.

Examples

LSET TALLY*=MKI*(IZ)

Field name tally$ would now contain a two-byte representation of the

integer i%.

A*=MKIt(8/I)

143

TRS-80 MODEL III DISK SYSTEM

AS becomes a two-byte representation of the integer portion of s/i Any

^Z:\TTk T;f-^ th3t A$ m thlS Case ic a normal ^ringvanable, not a buffer-field name.

Suppose baseball/bat (a non-standard file extension) has been opened forrandom access using buffer 2, and the buffer has been FiELDed as follows

field:

length:

NM$
16

YRS$

2

AVG$

4
HR$

2

AB$

4
ERNINGS

4
nm$ is intended to hold a character string; avgs, ab$ and ernings, converted
single-precision values; yrs$ and hr$, converted integers.

Suppose we want to write the following data record:

slow learner played 38 years; lifetime batting average 123-
career homeruns, 11; at bats, 32768;... .earnings - 13.75.

'

Then we'd use the make-string functions as follows:

1000 LSET NM$="SL0W LEARNER"
1010 LSET YRS$=MKI$(38)
1020 LSET AVG*=MKS*(,123)
1030 LSET HR$=MKI$(11)
1040 LSET AB$=MKS$(32768)
1050 LSET ERNING$=MKS*(-13.75)

After this sequence, you can write slow learner's information to disk withhe put statement. When you read it back from disk with get, you will need
to restore the numeric data from string to numeric form, using cvi and cvs

144

DISK BASIC illl

Methods of Access

Disk basic provides two means of file access:

• Sequential— in which you start reading or writing data at the beginning of

a file; subsequent reads or writes are done at following positions in the file.

• Random— in which you start reading or writing at any record you specify.

(Random access is also called direct access.)

Sequential access is stream-oriented; that is, the number of characters read or

written can vary, and is usually determined by delimiters in the data. Random

access is record-oriented; that is, data is always read or written in fixed-length

blocks called records.

To do any input/output to a disk file, you must first open the file. When you

open the file, you specify what kind of access you want:

• o for sequential output

• i for sequential input

• r for random input/output

• e (Extend) for sequential output starting at the end of file.

You also assign a file buffer for basic to use during file accesses. This number

can be from 1 to 15, but must not exceed the number of concurrent files you

requested when you started basic from trsdos. For example, if you started

basic with 3 files, you can use buffer numbers 1, 2, and 3. Once you assign a

buffer number to a file, you cannot assign that number to another file until you

Close the first file.

Examples

OPEN "0"
t 1 * "TEST"

Creates a sequential output file named test on the first available drive; if test

already exists, its previous contents are lost. Buffer 1 will be used for this file.

OPEN "I" t 2* "TEST 1

Opens test for sequential input, using buffer 2.

OPEN "R" t i * "TEST"

Opens test for direct access, using buffer 1 . If test does not exist, it will be

created on the first available drive. Since record length is not specified, 256-byte

records will be used.

OPEN "R" t 1 t "TEST" t 40

Same as preceding example, but 40-byte records will be used.

OPEN "E" f 1 * "TEST"

Opens test sequentially for write and positions to EOF.

145

TRS-80 MODEL III DISK SYSTEM

Sequential Access

This is the simplest way to store data in and retrieve it from a file. It is ideal for
storing free-form data without wasting space between data items. You read the
items back in the same order in which they were written.

There are several important points to keep in mind.

1

.

You must start writing at the beginning of the file. If the data you are seeking
is somewhere inside, you have to read your way up to it.

2. Each time you Open a file for sequential output, the file's previous contents
are lost, unless you use "E" instead of "O" for the mode.

3. To update (change) a sequential file, read in the file and write out the updated
data to a new output file.

4. Data written sequentially usually includes delimiters (markers) to signify

where each data item begins and ends. To read a file sequentially, you must
know ahead of time the format of the data. For example: Does the file consist

of lines of text terminated with carriage returns? Does it consist of numbers
separated by blank spaces? Does it consist of alternating text and numeric
information?

5. Sequential files are always written as Ascn-coded text, one byte for each
character of data. For example, the number:

1*2345

requires 8 bytes of disk storage, including the leading and trailing blanks that

are supplied. The text string:

JOHNSON * ROBERT

requires 15 bytes of disk storage.

6. Sequential files are always written with a record length of 256.

Sequential Output: An Example

Suppose we want to store a table of English-to-metric conversion constants:

English unit Metric equivalent

1 inch 2.54001 centimeters

1 mile 1.60935 kilometers

1 acre 4046.86 sq. meters
1 cubic inch 0.01638716 liter

1 U.S. gaifon 3.785 liters

1 liquid quart 0.9463 liter

1 lb (avoir) 0.45359 kilogram

146

DISK BASIC

First we decide what the data image is going to be. Let's say we want it to look

like this:

english unit) metric unit, factor (ENTER)

For example, the stored data would start out:

IN->CMf 2*54001 CENTER)

The following program will create such a data file.

Note: X'OD' represents a carriage return.

10 OPEN "0" tl t"METRIC/TXT"

20 FOR 11=1 TO 7

30 READ UNIT*, FACTR

40 PRINTttl f UNIT$; " #"
3 FACTR

50 NEXT

G0 CLOSE
70 DATA IN->CMf 2*54001 t MI->KM» 1*60935* ACRE->SQ * KM t

404G.8S E-G

80 DATA CU.IN->LTR> l*G3871GE-2t GAL->LTR , 3*785

30 DATA LIQ*QT->LTR* 0*84G3» L6->KG> 0*45359

Line 10 creates a disk file named metric/txt, and assigns buffer 1 for sequential

output to that file. The extension /txt is used because sequential output always

stores the data as Ascii-coded text.

Note: If metric/txt already exists, line 10 will cause all its data to be lost.

Here's why: Whenever a file is opened for sequential output, the end-of-file

(eof) is set to the beginning of the file. In effect, trsdos "forgets" that

anything has ever been written beyond this point. To avoid this, you could use e

instead of o in line 10.

Line 40 prints the current contents of units and factr to the file. Since the

spring items do not contain delimiters, it is not necessary to print explicit quotes

around them. The explicit comma is sufficient.

Line 60 closes the file. The eof is at the end of the last data item, i.e., 0.45359,

so that later, during input, basic will know when it has read all the data.

Sequential Input: An Example

The following program reads the data from metric/txt into two "parallel"

arrays, then asks you to enter a conversion problem.

5 CLEAR 500

10 DIM UNIT*(9)t FACTRO) 'allows for up to 10 data pairs

20 0PEN H
r' tl "METRIC/TXT"

25 n, =

30 IF EOF(l) THEN 70

40 INPUT*! » UNIT$(II) tFACTR(IX)

147

TRS-80 MODEL III DISK SYSTEM

50 IZ=IZ+1

G0 G0T
f

30

70 CLOSE ' Conversion factors have been read-in
100 CLS: PRINT TAB(5)"*** English to Hetric Conuersions ***"
110 FOR ITEM'^B TO 12-1

120 PRINT TAB(9) 5USING" (##) 1 % « 5ITEMZ*
UNIT$(ITEMI)

130 NEXT

140 PRINT @ 704* "Which conversion (0-B)" i

150 INPUT CHOICER
1G0 INPUT i! Er,ter English quantity" 5V

170 PRINT"The Metric equivalent is" 0*FACTR(CH0ICE2)
180 INPUT"Press (ENTER) to continue" 5X

190 PRINT @ 704* CHRtOl) 'clear to end of frame
200 GOTO 140

Line 20 opens the file for sequential input. Input begins at the beginning of
the file.

Line 30 checks to see that the end-of-file record hasn't been reached. If it has,
control branches from the disk input loop to the part of the program that uses

'

the newly acquired data.

Line 40 reads a value into the string array unit$(), and a number into the

single-precision array factr(). Note that this input list parallels the print# list

that created the data file (see the section "Sequential Output: An Example").
This parallelism is not required, however. We could just as successfully have
used:

40 INPUT*!* UNIT*<n,): INPUT#1 ,FACTR (11

)

How to update a file

Suppose you want to add more entries into the English-Metric conversion file.

You could simply re-Open the file with mode = e and print# the extra data.
Or, you might want to leave the old file intact and output a new file:

1

.

Open the file for sequential input (Mode = i)

2. Open another new data file for sequential output (Mode = o)

3. Input a block of data and update the data as necessary

4. Output the data to the new file

5. Repeat steps 3 and 4 until all data has been read, updated, and output to the
new file; then go to step 6

6. Close both files

148

DISK BASIC

Sequential Line Input: An Example

Using the line-oriented input, you can write programs that edit other basic

program files: renumber them, change lprints to prints, etc.— as long as these

"target" programs are stored in ascii format.

The following program counts the number of lines in any ascii— format basic

disk file with the extension /txt.

10 CLEAR 300

20 INPUT'WHAT IS THE NAME OF THE PROGRAM"; PROG*

30 IF INSTR(PROG*»"/TXT")=0 THEN 110 'require /TXT extension

40 0PEN"I H
t 1 t PROG*

50 H. =

60 IF EOF(l) THEN 30

70 n,= n,+ l: LINE INPUT#I t TEMP*

80 GOTO G0

30 PRINT PROG*" IS" 11 "LINES LONG*"

100 CLOSE: GOTO 20

110 PRINT "FILESPEC MUST INCLUDE THE EXTENSION '/TXT'"

120 GOTO 20

For basic programs stored in ascii, each program line ends with a carriage

return character not preceded by a line feed. So the line input in line 70

automatically reads one entire line at a time, into the variable temp$. Variable

i% actually does the counting.

To try out the program, first save any basic program using the a (ascii) option

(See save). Use the extension /txt.

149

TRS-80 MODEL III DISK SYSTEM

Random Access Techniques

Random access offers several advantages over sequential access:

• Instead of having to start reading at the beginning of a file, you can read any
record you specify.

• To update a file, you don't have to read in the entire file, update the data, and
write it out again. You can rewrite or add to any record you choose, without
having to go through any of the other records.

• Random access is more efficient— data takes up less space and is read and
written faster.

• Opening a file for direct access allows you to write and read from the file via
the same buffer.

• Random access provides many powerful statements and functions to structure
your data. Once you have set up the structure, direct input/output becomes
quite simple.

The last advantage listed above is also the "hard part" of direct access. It takes
a little extra thought.

For the purposes of direct access, you can think of a disk file as a set of boxes— like a wall of post-office boxes. Just like the post office receptacles, the file

boxes are numbered. We call these boxes "records."

You can place data in any record, or read the contents of any record, with
statements like:

PUT 1*5 write buffer- 1 contents to record 5

GET 1 >5 read the contents of record 5 into buffer-

1

In Figure 14, we assume a record length of 256.

(256)
[bytesJ

#6

(256 \

Kbytes,/

#1

(256)
\BYTES J

#7

/256 \

\BYTESy

#2

(256)
\ BYTES J

#8

(256 \

MBYTES,/

#3

(
256

)
[bytes J

#9

(256 \

[BYTESJ

#4

(256
)

[BYTESJ

#10

l#5l

RECORDS IN DISK FILE

Figure 14. get and put.

I/O BUFFERS IN RAM

150

DISK BASIC

The buffer is a waiting area for the data. Before writing data to a file, you must

place it in the buffer assigned to the file. After reading data from a file, you

must retrieve it from the buffer.

As you can see from the sample put and get statements above, data is passed to

and from the disk in records. The size of each record is determined by an Open

statement.

Storing Data in a Buffer

You must place the entire record into the buffer before putting its contents into

the disk file.

This is accomplished by 1) dividing the buffer up into fields and naming them,

then 2) placing the string or numeric data into the fields.

For example, suppose we want to store a glossary on disk. Each record will

consist of a word followed by its definition. We start with:

100 0PEN"R"» It "GLOSSARY/BAS"

110 FIELD It 16 AS ND$* 240 AS MEANINGS

Line 100 opens a file named glossary/bas (creates it if it doesn't already exist);

and gives buffer 1 direct access to the file.

Line 110 defines two fields onto buffer 1:

wd$ consists of the first 16 bytes of the buffer;

meanings consists of the last 240 bytes.

wd$ and meanings are now field-names

What makes field names different? Most string variables point to an area in

memory called the string space. This is where the value of the string is stored.

Field names, on the other hand, point to the buffer area assigned in the field

statement. So, for example, the statement:

10 PRINT WD$? ":" 5 MEANING*

displays the contents of the two buffer fields defined above.

These values are meaningless unless we first place data in the buffer, lset, rset

and get can all be used to accomplish this function. We'll start with lset and

rset, which are used in preparation for disk output.

Our first entry is the word "left-justify" followed by its definition.

100 0PEN"R H
* 1* "GLOSSARY/BAS"

110 FIELD 1* IS AS ND$, 240 AS MEANING$

120 LSET WD*="LEFT-JUSTIFY"

130 LSET MEANING*="T0 PLACE A VALUE IN A FIELD FROM LEFT TO

RIGHT? IF THE DATA DOESN'T FILL THE FIELD* BLANKS ARE

ADDED ON THE RIGHT 5 IF THE DATA IS TOO LONG t THE EXTRA

151

TRS-80 MODEL III DISK SYSTEM

CHARACTERS ON THE RIGHT ARE IGNORED* LSET IS A LEFT-
JUSTIFY FUNCTION/'

Line 120 left-justifies the value in quotes into the first field in buffer 1. Line 130
does the same thing to its quoted string.

Note: rset would place filler-blanks to the left of the item. Truncation would
still be on the right.

Now that the data is in the buffer, we can write it to disk with a simple put
statement:

140 PUT 1 ,1

150 CLOSE

This writes the first record into the file glossary/bas.

To read and print the first record in glossary/bas, use the following sequence:

1S0 OPENTV" t it "GLOSSARY/BAS"
170 FIELD It IS AS ND$ # 240 AS HEANING*
180 GET 1 ,1

1S0 PRINT MD$: PRINT MEANING*
200 CLOSE

Line 160 and 170 are required only because we closed the file in line 150. If we
hadn't closed it, we could go directly to line 180.

152

DISK BASIC

Random Access: A General

Procedure

The previous example shows the necessary sequences to read and write using

random access. But it does not demonstrate the primary advantages of this form

of access— in particular, it doesn't show how to update existing files by going

directly to the desired record.

The program below, glossacc/bas, develops the glossary example to show

some of the techniques of random access for file maintenance. But before

looking at the program, study this general procedure for creating and

maintaining files via random access.

Step
See GLOSSACC/BAS,

Line Number

1 . Open the file

2. Field the buffer

3. Get the record to be updated

4. Display current contents of the record (use

CVD, CVI, CVS before displaying numeric

data)

5. LSET and RSET new values into the fields

(use MKD$, MKI$, MKS$ with numeric data

before setting it into the buffer)

6. PUT the updated record

7. To update another record, continue at step 3.

Otherwise, go to step 8.

8. Close the file

110

120

140

145-170

210-230

240

250-260

270

10 REM

100 CLS :

110 OPEN "

120 FIELD
130 INPUT

U0 GET 1 *

145 HX'l =

150 PRINT

1G0 PRINT

170 PRINT

180 m = "

W$

190 0$ = »

OK?" :

200 INPUT

210 IF m
220 IF D$

... GLOSSACC/BAS ...

CLEAR 300

R" . 1 > "GL0SSARY/BAS"

1» IS AS WD*» 238 AS MEANING*. 2 AS NX*

"WHAT RECORD DO YOU WANT TO ACCESS"! RX

CVHNX*) 'SAVE LINK TO NEXT ALPHABETICAL ENTRY

"WORD : "WD*

"DEF'N :
"

: PRINT MEANING*

"NEXT ALPHABETICAL ENTRY: RECORD *:" NXX : PRINT
"

: INPUT "TYPE NEW WORD <ENTER> OR <ENTER> IF OK "

5

"
: PRINT "TYPE NEW DEF'N < ENTER) OR < ENTER) IF

LINE INPUT D$

"TYPE NEW SEQUENCE NUMBER OR <ENTER> IF OK" 5 NX*

<> "" THEN LSET WD* = W*

<> "" THEN LSET MEANING* = D*
./-"

153

TRS-80 MODEL III DISK SYSTEM

230 LSET NX$ = MKI$ (HX1)

240 PUT i t R%

245 RX = NX* 'USE NEXT ALPHA* LINK AS DEFAULT FOR NEXT RECORD

250 CLS : PRINT n TYPE <ENTER> TO READ NEXT ALPHA* ENTRY,":

PRINT" OR RECORD # <EIMTER> FOR SPECIFIC ENTRY,": INPUT "

OR < ENTER) TO QUIT'S RX

2S0 IF 0<RX THEN 140

270 CLOSE

280 END

Notice we've added a field, nx$, to the record (line 120). nx$ will contain the

number of the record which comes next in alphabetical sequence. This enables

us to proceed alphabetically through the glossary, provided we know which

record contains the entry which should come first.

For example, suppose the glossary contains:

record# word (WD$) defn,
pointer to next

alpha, entry (NX$)

1

2

3

4

LEFT-JUSTIFY
BYTE
RIGHT-JUSTIFY
HEXADECIMAL

3

4

1

When we read record 2 (byte), it tells us that record 4 (hexadecimal) is next,

which then tells us record 1 (left-justify) is next, etc. The last entry, record 3

(right-justify), points us to zero, which we take to mean "The End."

Since nx$ will contain an integer, we have to first convert that number to a two-

byte string representation, using mki$ (line 230 above).

The following program displays the glossary in alphabetical sequence:

300 REM GL0SS0UT/BAS «
310 CLS s CLEAR 300

320 OPEN "R" > 1* "GLOSSARY/BAB"

330 FIELD 1* IB AS ND$ * 238 AS MEANING*, 2 AS NX*

340 INPUT "WHICH RECORD IS FIRST ALPHABETICALLY" 5 HI

350 GET 1 t HI

3S0 PRINT : PRINT WD*

370 PRINT MEANING*

380 HI = CUI(NX$)

39-0 INPUT "PRESS <EIMTER> TO CONTINUE" 5 X

400 IF HI <> THEN 350

410 CLOSE

420 END

154

DISK BASIC

Disk BASIC Error Codes/Messages

51 Field overflow

52 Internal error

53 Bad file number

54 File not found

55 Bad file mode

58 Disk i/o error

62 Disk full

63 Input past end

64 Bad record number

65 Bad file name

67 Direct statement in file

68 Too many files

69 Disk write-protect

70 File access

Note: Disk errors cannot be simulated via the error statement.

155

INDEX

Index

Subject Page

Abbreviate 14

APPEND 26

ASCII 26, 53

ATTRIB 10, 24, 27, 60

AUTO 29, 72

BACKUP 8,25,57,67

BASIC 17

BASIC* 91

Baud 12, 62

Bits i. 62

BKSPC 82

(BREAK) 29, 31 , 44, 96

Buffer 91,123

BUILD 29,31,45,57

Byte i, 18, 62, 74

Cable (Ribbon) 1,2

Cass? 12

CLEAR 31,32,45,72

CLOCK 33

CLOSE 125

CLOAD 63

CLS 33

CMD"A" 93, 95

CMD"B" 93, 96

CMD"C" 93, 96

CMD"D" 93, 97

CMD"E" 93, 98

CMD'T' 93, 98

CMD"J" 93, 99

CMD"L" 93, 100

CMD"0" 93, 101

CMD"P" 93, 102

CMD"R" 93, 103

CMD"S" 93, 103

CMD'T" 93, 104

CMD"X" 93, 104

CMD"Z" 93, 105

Commands
Auto 29-30

Entering 20

Forms of 21

Subject Page

Library -
26-66

Syntax 20

Utility 67-89

CONVERT 8,10,25,68

COPY - 34, 50

CREATE 35

CSAVE 63

CVD, CVi, CVS 139-40

Data Diskette See Diskette

DATE 36, 37

DCB ™
DEBUG 37

DEFFN - 93,106

Definitions

Comments 21-2

Delimiter 22

Filename -21-2

Options 22

DEFUSR 93,108

DIR 25,27,44

Disk BASIC
Abbreviations 95

Instructions 11,12

Starting 11,91-2

Disk Drive

OancM 1,4, 6, 10, 34, 55

2, 3 (External) 1,4

Expansion 1,4

Installation 1,4

Diskette

Care 5

Data i, 24

Description 5

Inserting 5, 7

Labelling 6

Notch-protect 5

Organization 74

Specifications 15

System i, 6, 24

DIVIDE - 83

DMULT 84

DO 31,32,46,57,71

Drive Specification 23

DUAL 47

DUMP 48,54,59

157

TRS-80 MODEL III DISK SYSTEM

Subject Page

EOF (End-of-file) 45, 75, 140-1

ERROR 49
Error 13

DiskBASIC 155
TRSDOS 90

Extents See Technical Information

FIELD 134-6

File

Access 116, 123, 145
APPEND 26
COPY 34
Manipulation 116, 118
System vs User 25
Variable Length 91

Filename 23, 44
File Specification 22
FILPTR 85
FORMAT 8, 9, 25, 70

FORMS 49
FREE 35, 50
GET 136-7

Granules
Allocation 50
Defined 74
Number of 45, 51 , 74

HELP 51,53
HERZ50 71

Hexadecimal 32, 38, 41 , 48, 53
55

T 59, 93, 94
INIT 78
INPUT # 126-30

Installation 1-3

INSTR 93, 108

I/O 32, 61

I/O Calls 75, 77-89

KILL 52,118
LSET 138-9

LIB 53
LINE INPUT 110,93
LINE INPUT # 130-1

LIST 53
LOAD 12, 54, 118
Load 11

LOC 141-2

LOF 142
LPC 71

Maintenance 13

MASTER 55, 64
Memory

Display 38
Map 19
User 38, 59

Subject Page

Memory Size? 11

MEMTEST 72
MERGE 119

MID$ 93, 111

MKD$, MKI$, MKS$ 143-4

NAME 93, 112

NEW 11

Notations/Abbreviations 14

Octal 93, 94
OPEN 123,4
Operation 4

Password 8, 24, 25, 27
57, 60, 67, 69

Access 27
Changing 27
Master 9, 25
Protecting 69
Update 27

PATCH 12,55
PAUSE 56
POSEOF 82
POSN 79
Power On/Off 4, 30
PRINT # 131-3

Printer .31, 47, 105

Programming ii, 1

1

PROT 10,25,57
PURGE 25, 58
PUT 137-8

PUTEXT 81

RAM 18, 32, 40, 64, 71, 73
RAMDIR 84
Random File Access 150-4
General Procedure 1 53
Techniques 1 50

READ 70
Record Length 35, 45

Logical Length 26, 35, 45, 76
Number of 45, 77
Physical 77

RELO 59
RENAME 35, 60
Reset 30, 73

Location 4

REWIND 82

ROM 73

ROUTE 47, 61

RSET 138-9

RS-232-C 62

RUN 120

SAVE 11,121

158

INDEX

Subject Page

Save 1

1

Sector 77

SETCOM 62

Sequential File Access 146-149

Sequential input 1 47

Sequential Line Input 149

Sequential Output 146

Starting

Auto 29

DiskBASIC 11

System 6

TRSDOS 7

Specifications 1 5

System Diskette See "Diskette"

Syntax 83

TAPE 63

TIME 64

Troubleshooting 7
>
1

3

TRSDOS
Definition 17-19

Start-up 7

Using •
20

USING 133-4

USRn 93,113

VERF 31

Videooutput 47, 105

WP . ,
- 65

WRITE 80-1

Write-protect notch 5

XFERSYS 73

7-80 37,39,40,41,48
55, 56, 63

&Hand&0 93-4

Subject Page

Figures and Tables
A Diskette 5

Connection of the External Disk Cable

to the Model ill
2

Connection of External Disk Drives 3

Directory Listing (dir) 45

External Disk Cable with

Plugs Labeled 2

Free Map (free) 51

Full-Screen Format (debug) 43

get and put 1 50

Half-Screen Format (debug) 40

Input Process (input) 129

Inserting a Diskette 7

Model III Disk System
with External Drives 4

trsdos Memory Map 19

trsdos Roles 19

159

TRS-80 MODEL III DISK SYSTEM

Radio Shack Software License
The following are the terms and conditions of the Radio Shaek Software L.cense for
copies of Radio Shack software either purchased by the customer, or received with
or as part ot hardware purchased by customer:

A. Radio Shack grants to CUSTOMER a personal, non-exclusive. pa,d up license to
use the Radio Shack computer software programs received. Title to the media
on which the software is recorded (cassette and/or disk) or stored (ROM) is
transferred to the CUSTOMER, but not title to the software.

B. In consideration for this license. CUSTOMER shall not reproduce cop.es of such
software programs except to produce the number of copies required for
personal use by CUSTOMER (if the software allows a backup copv to be made)
and to include Radio Shack's copyright notice on all copies of programs
reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack's system and applications software
(modified or not. in whole or in part), provided CUSTOMER has purchased one
copy of the software for each one resold. The provisions of this Software
License (paragraphs A, B. and C) shall also be applicable to third parties
purchasing such software from CUSTOMER.

Important Note
AH Radio Shack computer programs are licensed on an "as is" basis without
warranty.

Radio Shack shall have no liability or responsibility to customer or any other person
or entity wtth respect to any liability, loss or damage caused or alleged to be caused
directly or indirectly by computer equipment or programs sold by Radio Shack
including but not limited to any interruption of service, loss of business or
anticipatory profits or consequential damages resulting from the use or operation of
such computer or computer programs

.

Good data processing procedure dictates that the user test the program, run and test
sample sets of data, and run the system in parallel with the system previously , n use
for a period of time adequate to insure that results of operation of the compuier or
program are satisfactory.

160

Service Policy

Radio Shack's nationwide network of service facilities provides quick, convenient,

and reliable repair services for all of its computer products, in most instances.

Warranty service will be performed in accordance with Radio Shack's Limited

Warranty. Non-warranty service will be provided at reasonable parts and labor

costs.

Because of the sensitivity ofcomputer equipment, and the problems which can

result from improper servicing, the following limitations also apply to the services

offered by Radio Shack:

1

.

If any of the warranty seals on any Radio Shack computer products are broken,

Radio Shack reserves the right to refuse to service the equipment or to void any

remaining warranty on the equipment.

2. If any Radio Shack computer equipment has been modified so that it is not

within manufacturer's specifications, including, but not limited to, the

installation of any non-Radio Shack parts , components , or replacement boards

,

then Radio Shack reserves the right to refuse to service the equipment, void any

remaining warranty, remove and replace any non-Radio Shack part found in the

equipment, and perform whatever modifications are necessary to return the

equipment to original factory manufacturer's specifications.

3

.

The cost for the labor and parts required to return the Radio Shack computer

equipment to original manufacturer's specifications will be charged to the

customer in addition to the normal repair charge

.

161

r^-

n

Mm

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
"AS IS" BASIS WITHOUT WARRANTY.

Radio Shack shall have no liability or responsibility to customer or any

other person or entity with respect to any liability, loss or damage caused

or alleged to be caused directly or indirectly by computer equipment or

programs sold by Radio Shack, including but not limited toany interrup-

tion of service, loss of business or anticipatory profits or consequential

damages resulting from the use or operation of such computer or

computer programs.

NOTE: Good data processing procedure dictates that the user test the

program, run and test sample sets of data, and run the system in

parallel with the system previously in use for a period of time

adequate to insure that results of operation of the computer or

program are satisfactory.

RADIO SHACK SOFTWARE LICENSE

A. Radio Shack grants to CUSTOMER a non-exclusive, paid up license to

use on CUSTOMER'S computer the Radio Shack computer software

received. Title to the media on which the software is recorded (cassette

and/or disk) or stored (ROM) is transferred to the CUSTOMER, but not

title to the software.

B. In consideration for this license, CUSTOMER shall not reproduce

copies of Radio Shack software except to reproduce the number of copies

required for use on CUSTOMER'S computer (if the software allows a

backup copy to be made), and shall include Radio Shack's copyright

notice on all copies of software reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack's system and applications soft-

ware (modified or not, in whole or in part), provided CUSTOMER has

purchased one copy of the software for each one resold. The provisions

of this software License (paragraphs A, B, and C) shall also be applicable

to third parties purchasing such software from CUSTOMER.

J* *^*«A\

WWft

mm

mm

illl

'&&

.r^

LIMITED WARRANTY
For a period of 90 days from the date of delivery, Radio Shack warrants to the
original purchaser that the computer hardware unit shall be free from manufac-
turing defects. This warranty is only applicable to the original purchaser who
purchased the unit from Radio Shack company-owned retail outlets or duly
authorized Radio Shack franchisees and dealers. This warranty is voided if the
unit is sold or transferred by purchaser to a third party. This warranty shall be
void if this unit's case or cabinet is opened, if the unit has been subjected to
improper or abnormal use, or if the unit is altered or modified. If a defect occurs
during the warranty period, the unit must be returned to a Radio Shack store,

franchisee, or dealer for repair, along with the sales ticket or lease agreement!
Purchaser's sole and exclusive remedy in the event of defect is limited to the
correction of the defect by adjustment, repair, replacement, or complete
refund at Radio Shack's election and sole expense. Radio Shack shall have no
obligation to replace or repair expendable items.

Any statements made by Radio Shack and its employees, including but not
limited to, statements regarding capacity, suitability for use, or performance of
the unit shall not be deemed a warranty or representation by Radio Shack for

any purpose, nor give rise to any liability or obligation of Radio Shack.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS WARRANTY OR IN THE
RADIO SHACK COMPUTER SALES AGREEMENT, THERE ARE NO
OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL RADIO
SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS, INDIRECT
SPECIAL, CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARISING
OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

7-80

RADIO SHACKH A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA

280-316 VICTORIA ROAD
RYDALMERE, N.S.W. 2116

BELGIUM U.K.

PARC INDUSTRIEL DE NANINNE
5140 NANINNE

BILST0N ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

8749167-581-SP PRINTED IN U.S.A.

